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ABSTRACT
Object detection tasks are central to the development of datasets
and algorithms in computer vision and machine learning. Despite
its centrality, object detection remains tedious and time-consuming
due to the inherent interactions that are often associated with draw-
ing precise annotations. In this paper, we introduce Snapper, an
interactive and intelligent annotation tool that intercepts bounding
box annotations as they’re drawn and “snaps” them to the nearby
object edges in real-time. Through a mixed-design user study with
18 full-time annotators, we compare Snapper’s annotation mode
to alternative modes of annotation and find that Snapper enables
participants to complete object detection tasks 39% more quickly
without diminishing annotation quality. Further, we find that par-
ticipants perceive Snapper as a tool that is interactively intuitive,
trustworthy, and helpful. We conclude by discussing the impli-
cations of our findings as they relate to augmenting annotators’
conventions for drawing annotations in practice.

CCS CONCEPTS
•Human-centered computing→ Empirical studies in HCI;
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1 INTRODUCTION
Data annotation is a task that is central to modern artificial intel-
ligence and machine learning. Historically, data annotation and
labeling have been facilitated by public-facing platforms, such as
Amazon Mechanical Turk and Prolific, that engage the general
public in completing various types of tasks in exchange for com-
pensation [40, 85]. Alongside these public-facing platforms, data
labeling and annotation efforts have continued to become common-
place in private industry firms who formally employ thousands
of individuals as full-time annotators [37]. Signifying the societal
relevance of these firms, market estimates for third-party data label-
ing solutions providers are projected to grow upward of 4.1 billion
USD by 2024 [18]. Similarly, governments are partnering with these
annotation firms to bring data labeling jobs to more remote parts
of their countries [88]. The growing prominence of data annota-
tion highlights the importance of research that aims to improve
annotators’ productivity through innovation and design.

An important facet of modern annotation is that it remains sig-
nificantly tedious. Among the most common modes of annotation
for object detection in 2D images, bounding box annotation asks
annotators to create rectangular annotations that bound objects
of relevance as tightly as possible [2]. In contrast to the simplistic
nature of bounding box annotations, semantic segmentation asks
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Step 1. Snapper extracts the user’s annotation 
and sends its coordinates to Snapper’s backend.

Step 3. Snapper uses the identified 
object’s coordinates as an adjustment.

Step 2. Snapper’s object detection 
model identifies an object’s location.

Step 4. Snapper “snaps” the user’s 
annotation upon mouse release.

Figure 1: Snapper enables annotators to be more productive
by automatically tightening their annotations with “snap-
pable”, model-generated adjustments in real-time.

annotators to create fine-grained, free-form annotations that anno-
tate an object’s boundary with point-level annotations, requiring an
order of magnitude more precision [53]. Prior research has aimed to
reduce the time-consuming nature by introducing new techniques
for accelerating the annotation process (e.g., minimizing the num-
ber of mouse clicks for an annotation [66]). However, the majority
of these proposed tools have been evaluated by means of simulation,
leaving much to be learned about their practical efficacy.

In this paper, we explore how aspects of annotator productivity
can be augmented with intelligent tooling in image annotation
contexts. We introduce and study Snapper, an interactive and intel-
ligent system that automatically adjusts bounding box annotations
in real-time. Snapper facilitates adjustments by intercepting and
forwarding all direct manipulation events on the annotation can-
vas (e.g., mousedown, mousedrag, and mouseup) through a set of
secondary event handlers that forward annotation coordinate infor-
mation to the system’s bounding box adjustment model. As shown
in Figure 1, Snapper’s user interface receives annotation updates
to adjust an annotator’s annotation immediately upon mouse re-
lease. In a user study with 18 annotators, we find Snapper’s mode
of annotation to be significantly usable, intuitive, and generally
helpful. We also find that it enables annotators to complete annota-
tion tasks more quickly with no detriment to label quality in a way
that existing techniques do not. In this paper, we specifically:

• Introduce Snapper, an interactive and intelligent system that
automatically adjusts bounding box annotations in real-time.

• Examine how Snapper supports image annotation practices
in comparison to conventional bounding box annotation and
the state-of-the-art Extreme Clicking annotation mode [66].

• Find that Snapper reduces total task time by 39% and cu-
mulative annotation creation and edit time by 95% without
diminishing the quality of annotations for objects that are
not small.

The remainder of this paper is structured as follows.We first provide
an overview of related work at the intersection of human-computer
interaction and machine learning. We then present Snapper along-
side the components that facilitate its auto-adjustment utility. We
present our approach for evaluation and conclude with a discussion
of considerations for designing new interactive and intelligent tools
that empower annotators in unique and powerful ways.

2 RELATEDWORK
In this section, we provide an overview of the work related to assis-
tive annotation tools, interface-supporting snapping, and interface
intelligence.

2.1 Snapping as an Assistive Technique
Snapping [10, 11, 79] is a common interface technique that allows
graphical objects to “snap” to ”snap locations” within a given graph-
ics space via direct manipulation. In contrast to manually position-
ing graphical objects, snapping supports object positioning by facil-
itating exceptional precision with minimal effort [7]. Importantly,
traditional snapping hinges on the availability of “snap locations”.
The concept of snapping originates from Sutherland’s Sketchpad
that allowed users to draw graphical lines between two points on
a grid that lines would snap to [79]. Bier and Stone introduced
“snap-dragging”, a cursor-based technique that allows graphical
objects in 2D space to snap together during drag operations using
the presence of other graphical elements rather than a pre-existing
point grid [11]. Later, Bier demonstrated how the snap-dragging
technique can be used in three-dimensional space [10]. Today, snap-
ping exists as a standard feature in many applications as observed
by its presence in Microsoft PowerPoint, Google Slides, SketchUp,
AutoCAD, and more. Research has continued to demonstrate how
snapping can support new interactive experiences, ranging from
accessing remote screen content [6] to improving precision in the
construction of fabricated objects [62].

Prior research has demonstrated how snapping can be applied to
settings where “snap locations” are unknown. For example, Gleicher
introduced and demonstrated “image snapping”, a technique that
uses image features (e.g., shape origins, shape edges, or pixels with
specific colors) to identify areas of an image that an interface can
“snap” to [24]. Similar approaches have been adapted to facilitating
snapping in the augmented reality uses-cases, such as drawing
fine-grained annotations on mobile devices [47, 48] or determining
alignments between physical and virtual objects [64]. Inspired by
Bier [10], Szalavári et al. [80] introduced “face-snapping”, a tech-
nique for snapping objects in virtual reality in which shapes snap
together like puzzle pieces based on constraints of the virtual ob-
ject’s physical shape. More recent research on snapping has focused
on “smart interaction techniques” in which elements of traditional
snapping are augmented by design. One such example is Baudisch
et al. [7]’s Snap-and-Go technique, which facilitates snapping in 2D
and 3D without a deactivation function by augmenting the motor
space at the snap location.
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2.2 Techniques for Assisted Annotation
2.2.1 Drawing and Image Editing Applications. Researchers have
explored a variety of assistive tools and techniques for improving
annotation within drawing and image editing software applications.
The goal of these techniques is often centered around reducing
the time and cognitive effort required to annotate an object in
an image (e.g., with a selection) [12]. Adobe Photoshop’s Magic
Wand is one such tool that assists users in selecting a part of the
image with a specified configuration of tolerance and anti-aliasing.
Practical studies of the tool have repeatedly demonstrated its utility
for accelerating the task of object selection in a variety of image
contexts [75, 89]. Similarly, Adobe Photoshop’s Magnetic Lasso
allows users to identify boundaries by providing a rough, contoured
outline around an object boundary, a technique that was first seen in
Mortensen and Barrett [61]’s “Intelligent Scissors” concept. Device-
specific tools have facilitated “sloppy selection”, such as Lank and
Saund [46]’s work, that allows object selection to be inferred via
an analysis of motion dynamics of an input device rather than the
literal stroke that it emits. Further extensions have focused explicitly
on assistive selection for sketch segmentation and selection [63, 86].
Minimizing the number of modes in these contexts is an important
issue [76].

Such assistive tools are generally fueled by procedures that strate-
gically manipulate or query the underlying graphics space. Chuang
et al. [17] introduced a Bayesian approach for separating foreground
and background objects with “trimaps”. Inspired by this, Boykov
and Jolly [13] studied Graph Cut, an optimization technique that
achieves robust object segmentation when color distributions be-
tween foreground and background are not well separated. Rother
et al. [71] introduced GrabCut, an iterative version of the Graph
Cut technique. Most relevant to our work, Li et al. [49] introduced
lazy snapping, a graph-based computer vision technique that aims
to assist users in automatically segmenting objects. The interaction
design facilitated by the technique requires that users provide an
initial contour of a boundary that the technique will automatically
“snap” to a nearby edge. In a comparison with Adobe Photoshop’s
Magnetic Lasso, Li et al. observed that lazy snapping reduced the
participants’ use of the undo tool by 20%, reduced participants’
drawing time by 60%, and was generally described as “much easier”
and “almost magic”.

2.2.2 Crowdsourced Annotation. Image annotation is a type of
crowdsourced task that asks crowdworkers to create graphical an-
notations that either segment an object (e.g., with a fine-grained set
of free-form points) or bound an object (e.g., with a bounding-box)
[36]. It is generally well-understood that the task of creating and
modifying either type of annotation is time-consuming and tedious
because precision is paramount [66]. In a 2014 survey deployed to
CrowdFlower, Gadiraju et al. [23] reported that annotation-related
tasks (i.e., identified as VV tasks and IA tasks) account for half of
the tasks deployed to the platform. As machine learning practice
and research has further swelled in recent years and continues to
rely heavily on crowdsourced annotation to generate large datasets
(e.g., [43]), such annotation tasks have only increased in frequency,
scale, and importance.

A growing body of research has explored new techniques formin-
imizing annotation effort. For example, one line of work asks anno-
tators to identify points that “matter” in determining the boundary
of a particular object [41, 55, 87]. Conceptually, these approaches
draw from Papadopoulos et al. [66] who introduced “extreme click-
ing”, a technique in which annotators label an object with a finite
set of points on the 2D image that bound an object. Papadopoulos
et al. report a comparative study that indicates “extreme clicking”
allows annotators to label objects, on average, in 7 seconds per
box without diminishing annotation quality. Maninis et al. [55]
introduced DEXTR, a technique that operationalizes the “extreme
clicking” method. Benenson et al. [9] further demonstrated the vi-
ability of the technique’s utility to produce high-quality labels by
using it to produce masks for 2.5 million instances in the OpenIm-
ages dataset. In a study with workers on Amazon Mechanical Turk,
Bearman et al. [8] demonstrated that asking annotators to issue
only a single click at the center of an object is a viable alternative
to issuing several clicks at the boundary of an object. A similar ap-
proach was also explored by Papadopoulos et al. [67]. Subsequent
research has explored a myriad of individuals extensions aimed
at improving the state of interactive object segmentation (e.g., by
allowing corrections to machine predictions) [3, 42, 51]. Despite
being recognized as state-of-the-art technology, the vast majority
of these tools and techniques have been evaluated only through
simulation, with little known about their efficacy in practice.

2.3 Contribution
In summary, prior work has demonstrated the value in exploring
new techniques to reduce annotation effort. In this paper, we lever-
age the successes of prior work to motivate the design of Snapper, a
new interactive system that leverages facets of interface snapping to
reduce the laborious nature of drawing bounding box annotations
by hand. Alongside Snapper, we present findings from a user study
with full-time data annotators that compares the system’s perfor-
mance to state-of-the-art techniques that assist users in drawing
annotations by hand (i.e., extreme clicking).

3 SNAPPER
In this section, we introduce Snapper, an interactive and intelli-
gent system “snaps” ill-fitted object annotations to image-based
objects in real-time. We begin by discussing the concept behind the
Snapper system and propose a design space for machine-generated
recommendations for adjusting human annotations in real-time.
We then discuss Snapper’s system architecture.

3.1 Conceptual Motivation
Object annotation is a time-consuming and tedious task that re-
quires annotators to create annotations that “tightly” fit an object’s
boundaries. Bounding box annotation tasks, for example, require
annotators to ensure that all edges of an annotated object are en-
closed in the annotation. Furthermore, object segmentation tasks
require annotators to bound all edges of an object with a free-form
annotation. In practice, creating annotations that are precise and
well-aligned to object edges is laborious and fatiguing [1].

We argue that “noisy” labels are a by-product of the annota-
tion tools that exist today. We hypothesize that HCI research can
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Step 1: The User clicks and drags on the
image canvas to create an annotation.

Step 2: Snapper calculates search space
with the annotation’s padded boundary.

Step 3: Snapper’s identifies the coord-
inates of an object boundary in the space.

Step 4: Snapper renders the object boun-
dary as an adjustment recommendation.

Step 5: Upon mouse release, Snapper will 
“snap” the green box to the orange box.

Base Annotation Phase 2: SnapPhase 1: Find

Figure 2: Snapper’s Find-and-Snap procedure for generating and rendering annotation adjustment recommendations.

embrace the “noise” in human annotation and explore both new
and existing techniques alike in support of “de-noising” annotation
data at the time of collection. In particular, we investigate how a
well-known technique – snapping – can translate to the domain
of crowdsourced object annotation. In support of this goal, we de-
signed Snapper as an interactive tool that automatically adjusts
annotators’ noisy annotations, allowing them to accelerate their
work and spend less time being tedious in their labeling.

3.2 System Architecture
Snapper is an interactive and intelligent system that automati-
cally“snaps” object annotations to image-based objects in real-time.
The system’s implemented is entirely web-based and is composed
of two sub-systems. The first sub-system is a front-end ReactJS
component that intercepts annotation-related mouse events and
handles the rendering of recommendation information. The sys-
tem’s front-end architecturally complements the majority of web-
based annotation interfaces by relying only on the HTML <canvas>
element in conjunction with JavaScript event handlers. This design
principle enables other crowdsourced annotation platforms (e.g.,
Zooniverse [77]) to adopt or replicate Snapper-like interfaces as
described here. The second sub-system is a web server receives re-
quests from the front-end client, routes the requests to an machine
learning model to generate adjusted bounding box coordinates, and
sends the data back to the client. For our study, we implemented
and deployed Snapper within AWS SageMaker Ground Truth1, a
large-scale, commercial platform for data labeling and annotation.

3.3 The Find-and-Snap Technique
Inspired by design guidelines at the intersection of HCI and AI
[4, 35], Snapper’s interaction design centers around the Find-and-
Snap technique, a model-based interaction technique that identifies
objects in images via localization and “snaps” to the identified object
locations. The Find-and-Snap technique conceptually draws upon
mouse release. Shown in Figure 2, the Find-and-Snap technique
consists of two phases. First, Phase 1: Find (Section 3.3.1) localizes a
candidate object an image based on an initial human annotation.
Next, Phase 2: Snap (Section 3.3.2) can asynchronously “snap” the
user’s current annotation to an adjustment generated by the system.

1https://aws.amazon.com/sagemaker/groundtruth/

3.3.1 Phase 1: Find. Upon invocation, the Find-and-Snap technique
initiates the process of localizing an object by sending two parame-
ters to Snapper’s bounding box adjustment model:

(1) Annotation Coordinates [List]: The four coordinates of the
user’s initial bounding box annotation.

(2) Base Image URL [String]: The URL of the image from which
the coordinates are associated.

In the context of our deployed version of Snapper, Snapper’s front-
end implementation extracts each of these parameters automati-
cally from the annotation platform’s user interface in which it is
implemented.

Conventional bounding box annotation typically involves inter-
action designs in which annotations are created by click-and-drag
operations by which the mouse-up and mousedown events corre-
spond to creation and deletion. When drawing annotations with
this interaction design, annotators may be significantly imprecise
in their initial positioning of the annotation being drawn. We there-
fore implemented a third, optional parameter named Buffer Ratio
that Snapper will use to scale the user’s initial annotation coor-
dinates by the associated image’s height and width before being
sent to the model for adjustment (See Figure 2; Step 2). By default,
the Buffer Ratio parameter is set to 1.0. A larger Buffer Ratio will
increase the scale of the coordinates while a smaller value will do
the opposite. The Find phase concludes after having sent all param-
eters to Snapper’s adjustment model and received a response with
a valid set of four coordinates that represent the updated location
of the initial bounding box.

Toward the goal of studying the effect of Snapper’s adjustment
accuracy, we implemented a configurable setting that allows Snap-
per to control where object localization requests in the Find phase
are routed:

(1) Dynamic Model (DM): The Find technique adjusts user’s
initial annotations using Snapper’s adjustment model.

(2) Ground Truth (GT): The Find technique adjusts user’s initial
annotations using ground truth annotation data.

3.3.2 Phase 2: Snap. In its Snap phase, Snapper’s primary goal is
two-fold: (1) preparing proposed adjustments and (2) “snapping”
the user’s annotation to the recommendation. Upon releasing the
mouse, Snapper will adjust the user’s annotation coordinates to
the recommendation with an interpolated visual that mirrors the
popular “snap-to-grid” metaphor [7]. After the Snap is complete,
the adjusted annotation can be iteratively edited to the user’s liking.

https://aws.amazon.com/sagemaker/groundtruth/


Snapper: Accelerating Bounding Box Annotation in Object Detection Tasks with Find-and-Snap Tooling IUI ’24, March 18–21, 2024, Greenville, SC, USA

Figure 3: Snapper Bounding Box adjustment Model Design.

3.4 A Model for Bounding Box Adjustments
A tremendous number of high-performing object detection models
have been proposed by the computer vision community in recent
years [15, 52, 69, 70]. However, these state-of-the-art models are
typically optimized for unguided object detection. In support of
facilitating Snapper’s “snapping” functionality for adjusting users’
annotations, the input to our model is an initial bounding box,
provided by the annotator, which can serve as a marker for the
presence of an object while the output space is a single bounding
box. Furthermore, as the system has no intended object class it
aims to support, Snapper’s adjustment model should be object-
agnostic such that the system performs well on a range of object
classes. In general, these requirements diverges substantially from
the use-cases of these prior models.

3.4.1 Model Architecture. To enable Snapper with the ability to
adjust users’ annotations, we design and implement a machine
learning model for bounding box adjustment as shown in Figure 3.
As input, the model takes an image and a corresponding bounding
box annotation. The model extracts features from the image using
a convolutional neural network based on ResNet-50 [30]. Following
feature extraction, directional spatial pooling is applied to each
dimension to aggregate the information needed to identify an ap-
propriate edge location. As output, the model returns the four final
classification vectors identified in the previous step. The model was
implemented in PyTorch.

3.4.2 Training Data: A Dataset of Noisy Object Annotations. Snap-
per’s end-goal is to improve the accuracy of noisy user annota-
tions for arbitrary class objects by generating and applying an-
notation adjustments. As collecting human annotation data was
cost-prohibitive, we employ an approach in which we add noise to
a publicly available dataset of image object annotations. In support
of our goal for object-agnostic adjustments, we source our data
from the MS COCO dataset [50], which contains 1.5 million object
annotations across 91 classes in 330k images. Using an official train,
validation, and test split of the MS COCO dataset, we dynamically
generate noisy annotation data by randomly adjusting the ground
truth bounding box coordinates with “jitter”. Our procedure for
adding “jitter” first shifts the center of the bounding box by up to
10% of the corresponding bounding box dimension on each axis and
then rescales the dimensions of the bounding box by a randomly
sampled ratio between 0.9 and 1.1. The jittering procedure was ap-
plied to adjust the positioning of 860,000 ground truth annotations.
The product of this procedure is visualized in Figure 4.

Figure 4: Examples of noisy bounding boxes generated by the
jittering procedure used to prepare training data for Snap-
per’s adjustment model. Unaltered ground truth boxes are
shown in green while jittered boxes are in shown in red.

We train our model using all 80 object types in the MS COCO
dataset covering a large variety of classes. Furthermore, the specific
semantic class information is not passed to the model. Because of
these design choices and the dataset’s tremendous size, we find
that our trained model is able to generalize not only to the breadth
of object classes within the MS COCO dataset, but also to other
common datasets with a generic set of object classes (e.g., PASCAL
VOC 2012 [21]).

3.4.3 Model Evaluation. We evaluated Snapper’s adjustmentmodel
using a type of evaluation standard to object detection models that
employs two measures to examine validity: Intersection over Union
(IoU), Edge Deviance, and Corner Deviance [81]. Commonly used
to assess quality in standard object detection tasks, IoU calculates
the alignment between two annotations by dividing the annota-
tions’ area of overlap by the annotations’ area of union, yielding
a metric that ranges from 0 to 1. However, as our system is aimed
at generating bounding boxes of annotation quality, we note that
the edges of a relatively large bounding box with high IoU may
nonetheless be insufficiently accurate at the pixel level. This mo-
tivates the addition of the Edge Deviance and Corner Deviance
metrics, which are calculated by taking the fraction of edges and
corners that deviate from the ground truth by a pixel distance. Here,
we apply these metrics to the validation set from the official MS
COCO used for training. We specifically calculate the fraction of
bounding boxes with IoU exceeding 90% alongside the fraction of
Edge Deviations and Corner Deviations that deviate less than 1 or
3 pixels from the corresponding ground truth.

Furthermore, we examine the ability of Snapper to produce
bounding box edges with higher degrees of precision as compared
withmodels trained using the traditional object detection objectives.
To this end, we apply Snapper to the detection output of DETR
[15] (a current transformer-based state-of-the-art object detector)
used as “noisy" input data and compare the quality of the refined
detection results to the input.

Table 1: Performance of Snapper’s bounding box adjustment
model when applied to refine annotations in two different
sources of noisy data: Jittered MS COCO and DETR.

IoU Edge Corner
Deviation Deviation

Source mIoU > 90% < 1px < 3px < 1px < 3px
COCO [50] 81.9% 8.6% 30.4% 57.9% 12.0% 38.1%
COCO [50] + Snapper 89.0% 51.9% 52.6% 80.4% 30.1% 65.5%
DETR [15] 76.2% 33.1% 34.1% 66.6% 12.3% 45.7%
DETR [15] + Snapper 76.6% 34.9% 40.5% 68.1% 18.2% 48.8%
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Figure 5: Our counterbalanced, mixed-design study with six possible configurations with four condition types: Baseline (BL),
Extreme Clicking (EC), and Snapper with Ground Truth (SN-GT), and Snapper with Dynamic Model (SN-DM).

As shown in Table 1, the output of Snapper’s adjustment model
is improved over the two sources of noisy data across each of
the three metrics. The improvements are especially notable in the
pixel-level precision metrics, which are crucial requirements for the
acceptability of annotation quality labels. We observe that applying
Snapper to the Jittered MS COCO dataset improved IoU by upward
of 40%. While the quality gain from using Snapper over the DETR
detection output is lower, we still note that Snapper is able to
increase the fraction of edges and corners within 1px of the ground
truth by more 19% and 48%, respectively. These findings support
our decision to create and use a custom, task-specific model design.

4 USER STUDY
Snapper seeks to accelerate image annotation tasks without sac-
rificing annotation quality. In support of this goal, we designed a
“first-use” study [29] to understand the strengths and shortcomings
of the system.

4.1 Research Questions
Wemotivate our study with Snapper using three research questions:

RQ1. How does Snapper support annotation practices for image
object annotation?

RQ2. How does annotators’ use of Snapper affect annotation qual-
ity?

RQ3. How does annotators’ use of Snapper affect annotation time?

Unlike prior approaches [66, 72], we employ a mixed-methods
approach to evaluate our tools through the combined lens of quali-
tative and quantitative data. To address RQ1, we ask open-ended
questions related to Snapper’s impact and administer validated
instruments to assess system usability, team performance, and per-
ceived cognitive load. To address RQ2 and RQ3 respectively, we
collect image annotations on images for a ground-truth dataset
alongside time-stamped telemetry data that details activities that
take place in the annotation interface.

4.2 Study Design
To address our research questions, we developed a mixed design
study that includes elements of within-subjects and between-subjects
studies as shown in Figure 5. Through the study’s between-subjects
design, we compare annotators’ use of Snapper with a baseline
mode of annotation – conventional bounding box annotation – and
a state-of-the-art mode of annotation that prior research has iden-
tified as being notably fast – Extreme Point annotation [66]. The
study conditions were defined as follows:

• Condition 1: Baseline: Traditional Bounding Box (BL).
Participantsmanually annotate all image objects via standard
bounding boxes, following the standard interaction design
for 2D image annotation tasks.

• Condition 2: Extreme Clicking (EC). Participants manu-
ally annotate all image objects via Papadopoulos et al. [66]’s
four-point “extreme clicking” technique, yielding a bounding
box upon the fourth click.

• Condition 3: Snapper (SN). Participants manually anno-
tate all image objects via standard bounding boxes with the
availability of Snapper’s “Find-and-Snap” tool. In support of
addressing all three RQs, we explore two versions of Snap-
per that distinctly source their adjustment recommendations
from Snapper’s bounding box adjustment model or from
direct comparisons to ground truth data:
– Condition 3A: Snapper - Ground Truth (SN-GT). Snap-
per’s model backend will generate annotation adjustment
recommendations for relevant objects statically using known
ground truth information.

– Condition 3B: Snapper - Dynamic Model (SN-DM).
Snapper’s model backend will generate annotation adjust-
ment recommendations for objects dynamically using its
object detection model.

Our study design’s within-subjects nature requires each participant
to engage in all three conditions. The within-subjects design seeks
both to eliminate the effect of individual differences [26] and the
unavailability of an appropriate baseline measure of performance
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for traditional bounding box annotation tasks and new state-of-the-
art techniques [66, 67]. In contrast to the within-subjects design,
the between-subjects nature of our study requires participants to
engage with only one version of the Snapper tool. The motivation
behind this study design decision is driven by the possibility of
a learning effect that would arise in participating in both Snap-
per conditions (e.g., biases about accuracy developed in 3A would
likely affect participants’ interactions with the tool in 3B). In cir-
cumstances where such effects are suspected, experimental design
advises a between-subjects design.

4.3 Task Design: Object Detection
Prior studies of new interaction techniques for 2D annotation fre-
quently utilize image dataset benchmarks, such as DAVIS17 [38, 65],
Cityscapes [51], PASCAL VOC 2007 [66, 67], PASCAL VOC 2012
[8, 42, 66] and MS COCO [3, 9, 42, 67], to evaluate their efficacy.
A caveat of these studies is that they are often evaluated through
simulation because they are predominantly published in computer
vision and machine learning venues where user studies may un-
dergo less scrutiny [3, 9, 42, 51, 65, 67]. Further, the studies that
involve human subjects often fail to report significant detail (e.g.,
the number of recruited annotators [8]). The complications are fur-
ther exaggerated by divergences in task design, such as the number
of tasks that annotator complete (e.g., 10 images [66] vs. 20 images
[67]) or the number of object classes to be labeled (e.g., 1 object
class [66] vs. 65 object classes [9]).

We designed an object detection task for 2D images that, to the
best of its ability, was inspired by task designs in prior research.
We used the PASCAL VOC 2012 dataset’s images and associated
annotations [21] as it remains one of the most widely used dataset
benchmarks in computer vision and machine learning research,
specifically for evaluating interactive annotation techniques. Addi-
tionally, From the dataset’s 11,530 images, we randomly sampled 90
images. The sampling criteria required that an image must contain
at least two known instances of relevant objects classes that require
annotation. From the dataset’s 20 object classes, we ask participants
to identify one object class from each of the dataset’s four types
of object class types (i.e., Person, Animal, Vehicle, Indoor). The
object classes are: Person, Sheep, Bicycle, and Chair. Alongside class
presence, our sampling criteria required that half of the 90 images
have at least one object instance that was flagged as “occluded” in
order to ensure that our subset of images reflected the reality that
up to 70% of a single object classes’ instances can be occluded [20].
Finally, we required that each image have between three to five
objects.

We divided the subset of 90 sampled images into three set of
30 images (i.e., Block 1, Block 2, and Block 3). Each block was
split evenly between 15 images with no occluded objects and 15
images with at least one occluded object. Blocks 1, 2, and 3 were
respectively assigned to each participant’s first, second, and third
condition. Task queues within each block were randomized for
each participant to prevent any statistical effects related to image
ordering.

4.3.1 Measuring Task Accuracy. Mirroring the evaluation described
in Section 3.4.3, we use our Intersection over Union (IoU) as our
primary measure of annotation accuracy following a wealth of

prior work [32, 45]. For any ground truth annotation that does
not have a corresponding user-generated annotation (i.e., a false
negative), an IoU value of 0 is assigned to the bounding box. We
map user-generated annotations to the ground-truth data on the
basis of object class and IoU via the Hungarian algorithm [44].

4.3.2 Measuring Object Size. Alongside annotation accuracy, we
employ a procedure popularized by Hoiem et al. [34] for applying
a “size” label to all ground truth annotations used in our dataset.
We calculate the area of each ground truth annotation and then bin
the object into one of five possible “size” labels that are calculated
relative to the object sizes for the given object class. The five labels
with their distinctions are as follows with respect to the given
object’s class: Extra Small (between 0 and 10 percentile of object
size), Small (between 10 and 30 percentile of object size), Medium
(between 30 and 70 percentile of object size), Large (between 70
and 90 percentile of object size), and Extra Large (between 90 and
100 percentile of object size). When a user annotation is matched
to a ground truth annotation for the accuracy calculation described
in Section 4.3.1, the ground truth’s size label is mutually applied to
the user’s annotation data.

4.4 Data Collection
We collected the following data as a part of the study:

4.4.1 Pre-Study Questionnaire. We inquired about participants’
prior experience with bounding box annotation task and prior
experience with the commercial annotation interface.

4.4.2 User-Generated Annotation Data. Across all conditions, we
collected annotation data that was generated both by the user and by
the Snapper system. In addition to collecting the “final” annotation
data that was submitted by participants, we collected data about
the “Visual Recommendation” annotations produced by Snapper
and the corresponding user-generated annotation that existed on
the annotation canvas.

4.4.3 Interface Telemetry Data. We collected high-level interface
telemetry data (i.e., activity logs) about participants’ interface ac-
tivities [19, 33, 74]. We limit our telemetry analysis to two events:
(1) annotation creation and (2) annotation edit. For bounding box
annotation, an annotation create event begins when a “mousedown”
event occurs on the annotation canvas and ends when a consecutive
“mouseup” event takes place. For extreme point annotation, an anno-
tation create event begins when the first extreme-point is issued to
the annotation canvas via a “mousedown” event and ends when the
fourth consecutive “mousedown” event takes place. Edit events for
both bounding box annotation and extreme point annotation occur
under identical circumstances (e.g., a “mousedown” event followed
by consecutive “mouseup” event that updates the position of an
annotation). All events were denoted with a client-side timestamp.

4.4.4 Post-Training Questionnaire. Following the completion of
each training job, we administered a questionnaire that asked par-
ticipants to state their agreement with the following statement: “I
understand how to make annotations with the annotation tool used
in the training job that I just completed.” followed by a free-form
text field that allowed them to provide additional information if
any misunderstanding was present.
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Table 2: Post-Questionnaire statements for SN-GT and SN-DM conditions. Agreement and Importance were reported on a
standard Likert scale from 1 to 5. For Agreement, 1 indicated “Strongly Disagree” and 5 indicated “Strongly Agree”.

# Statement Measure Scale
1 I trust the Find-and-Snap tool. Agreement Likert (1-5)
2 Working with the Find-and-Snap tool improved my efficiency. Agreement Likert (1-5)
3 Working with the Find-and-Snap tool improved my quality of work. Agreement Likert (1-5)
4 The Find-and-Snap tool increased the productivity of the team. Agreement Likert (1-5)
5 The Find-and-Snap tool was necessary to successfully complete the task. Agreement Likert (1-5)
6 I was necessary to the successful completion of the task. Agreement Likert (1-5)
7 If given a choice, I would work with Find-and-Snap tool again. Agreement Likert (1-5)

4.4.5 Post-Condition Questionnaire. Following the completion of
each condition, we administered a questionnaire on the basis of
the condition being completed. A total of three post-condition
questionnaires were completed by each participant as shown in
Figure 5.

• All Conditions. Following the completion of the each con-
dition, we administered a questionnaire that included ques-
tions from the NASA-TLX instrument to measure cognitive
load [28] and the System Usability Scale (SUS) to measure
system usability [5].

• SN-GT and SN-DM Conditions. In addition to the NASA-
TLX and SUS instruments, the Post Condition Questionnaire
for the Snapper conditions administered the set of state-
ments in Table 2. This includes six statements of the Team
Performance and Productivity instrument [25] and three
statements related to annotation quality and annotation time.
Inspired by established principles of human-AI interaction
[4, 35, 59], the questionnaire concluded by asking partici-
pants to state the importance of the Find-and-Snap tool’s
capabilities that span four relevant dimensions: accuracy,
speed, affordance, and explainability.

4.4.6 Post-StudyQuestionnaire. We concluded the study by admin-
istering a post-questionnaire that included three questions. The
first two questions asked participants to indicate which of the three
approaches that they prefer as it relates to (1) being accurate in
their labeling and (2) being fast in their labeling. Participants were
then asked to rank their preference of the annotation experiences
explored across the three conditions.

4.5 Methods of Analysis
To test for differences in ordinal or continuous data collected be-
tween Snapper conditions, we employ Mann-Whitney U-tests [56],
a non-parametric test for examining differences between two un-
paired groups. To test for differences in ordinal or continuous data
collected for each participant across the three conditions, we employ
Freidman tests [22], a non-parametric test similar to the Kruskal-
Wallis test and designed explicitly for repeated measures settings.
We employ Thematic Analysis [14] to identify themes in responses
to open-ended questions in the Post-Condition Questionnaires.

4.6 Participants
“Annotators” have been historically present in private workforces
(e.g., the Linguistic Data Consortium [54]) as well as those that

work through public-facing crowdsourcing platforms, such as Ama-
zon Mechanical Turk, Prolific, or Crowdworkers. Recent studies
with human subjects have gravitated toward using the latter to
examine the feasibility of new annotation techniques or procedures
[8, 9, 66, 67]. Over the past decade, large technology corporations
have created similar platforms that are intended for internal use
only, such as Microsoft’s UHRS [84]. The widespread proliferation
of annotation and its role in machine learning has lead to the devel-
opment of “annotation workforces” that engage in annotation tasks
as full-time employees and often have access to a readily-available
queue of annotation tasks [60, 83]. Understanding the individual
differences between these populations remains an on-going effort
within CSCW and beyond it [58, 78].

We recruited participants from an annotation workforce at a
large technology corporation in which annotators are hired as full-
time employees. Our decision is motivated by several factors. First,
annotation workforces remain largely unstudied as a population
despite growing increasingly more common throughout the private
technology sector. Second, annotation workforces are, in many
ways, the ideal population to study the efficacy of new interaction
techniques as their attention is focused entirely on completing
annotation tasks that exist within their queue of work. In contrast,
research has demonstrated that other populations of annotators
can be subjected to scenarios of divided attention as a by-product
of economic incentives (e.g., workers on Amazon Mechanical Turk
multitasking across other HITs or finding additional work [82, 85]).
Conducting our study with an annotation workforce enables us to
speak more concretely about the ecological validity of Snapper’s
efficacy.

4.6.1 Recruitment Methodology. We used snowball sampling via
an internal mailing list to recruit participants for our study. Our
initial email extended an offer of study participation to full-time
annotators and included a description of our study which aimed
to “better understand how a new interactive tool affects annotator
productivity”. As annotators are accustomed to drawing from a task
queue, we framed study participation as “a standard annotation
task” that would be added to their work queue upon agreeing to
participate in order to reduce biases related to study awareness.

4.6.2 Study Procedure. Following recruitment, each participant
was randomly assigned to one of the six configurations detailed
in Figure 5 and then deployed a total of three primary labeling
jobs (i.e., via Anonymous Platform) corresponding to the three sub-
conditions tied to their study configuration. Three training jobs
were also launched for each condition to provide annotators with
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Figure 6: Reported agreement for each of the ten items of the System Usability Scale (SUS) across the three annotation modes.
A response of 1 indicates “Strongly Disagree” while a response of 5 indicates “Strongly Agree”.

the ability to gain experience with the annotation mode before
using it for the task. Following the creation of the labeling jobs,
each participant was onboarded with a personalized introduction
email that described the nature of the study and a series of study-
related steps that detailed the order in which each labeling job
or questionnaire should be completed. The email also included
an “Annotation Guidelines” PDF document that described the task
and provided annotators with three example images that had been
annotated with the “correct” annotations. Each training job required
annotators to use the job’s tool to recreate the annotations shown on
the images in the PDF. Participation concluded after the post-study
questionnaire was completed.

4.6.3 Study Population. A total of 18 participants were recruited
via our snowball sampling approach. Following a balanced study
design, a total of three participants were assigned to each configu-
ration shown in Figure 5. All, but one participant reported having
at least one year of experience with annotation-related work. 10
participants reported that they they regularly use a computer track-
pad as their input device when performing annotation tasks while
the remaining 8 reported using a standard computer mouse. 13
participants reported performing bounding box annotation tasks
“Sometimes” or “Often”. In contrast, 13 participants reported per-
forming annotation tasks with Extreme Clicking either “Never” or
“Almost Never”.

Participants completed the study, on average, in 54 minutes
(𝜎=15.6). Across the five types of questionnaires, the average ques-
tionnaire completion time was 46 seconds (𝜎=15.6). Average re-
sponses to Post-Training Questionnaires for the BL (𝜇=70.7, 𝜎=4.7),
EC (𝜇=70.7, 𝜎=4.7), and SN (𝜇=70.7, 𝜎=4.7) conditions were signifi-
cantly positive. The average time spent in the annotation interface
was 47minutes (𝜎=9.6). Across all three conditions, participants gen-
erated 4,900 annotations and 8,086 unique telemetry events related
to creating and editing annotations. Similarly, Snapper rendered a
total of 8,578 adjustment recommendations during annotation. The
average number of recommendations rendered on the annotation
canvas in a given drag event (i.e, before the user released their
mouse) was 5 (𝜎=2.7).

5 RESULTS
In this section, we report findings from our “first-use” study with
Snapper. To address each of our research questions thoroughly, we
structure our findings around the themes that arose from analyzing
qualitative data collected across our surveys. Where relevant, we
incorporate quantitative data to support observations made via
qualitative analysis.

5.1 Supporting Annotation Practices
5.1.1 Understanding First Impressions with Find-and-Snap Tool-
ing. Snapper was generally well-received by participants as a new
interactive tool for augmenting how they currently accomplish
their annotation work. As P4 notes, “the tool was easy to use, very
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Figure 7: Preferences of annotation modes collected in the Post-Study.
“BL” represents Baseline, “EC” represents Extreme Clicking„ and “SN” represents Snapper.

basic, and direct”. Snapper received favorable SUS scores (𝜇=74.8,
𝜎=6.0) which were, on average, slightly higher than both the stan-
dard bounding box annotation tool (𝜇=70.7, 𝜎=4.7) and the Extreme
Clicking tool (𝜇=70.4, 𝜎=4.6). We did not observe a statistically sig-
nificant difference in scores between annotation modes. However,
Friedman tests did reveal statistically significant effects between an-
notation modes on three items in the SUS: Complexity (X2(2) = 6.1,
p=0.046), Inconsistency (X2(2) = 0.024, p=0.002), and Learnability
(X2(2) = 7.0, p=0.029). As shown in Table 3, we observe significant
differences in Complexity between the Baseline and Extreme Click-
ing conditions, in Inconsistency between the Snapper and Baseline
conditions, and in Learnability between the Snapper and Extreme
Clicking conditions. We did not find significant differences for any
of the remaining seven dimensions.

Table 3: Results of pairwise Wilcoxon Signed Rank tests on
three SUS dimensions.

Dimension Comparison p r
Complexity Baseline x Extreme Clicking 0.017 0.58 **
Complexity Snapper x Baseline 1 0.02
Complexity Snapper x Extreme Clicking 0.105 0.41
Inconsistency Baseline x Extreme Clicking 0.156 0.38
Inconsistency Snapper x Baseline 0.004 0.70 **
Inconsistency Snapper x Extreme Clicking 0.407 0.21
Learnability Baseline x Extreme Clicking 0.070 0.45
Learnability Snapper x Baseline 1 0.11
Learnability Snapper x Extreme Clicking 0.050 0.49 *

We observe similar trends in Complexity, Learnability, and In-
consistency when asking annotators how each annotation mode
affected their accuracy or speed. When discussing the Snapper’s
effect on annotation speed and accuracy, aspects of the tool’s ease-
of-use were discussed by 10 annotators in light of the tool’s ability
to “speed up the annotation process” (P15):

“It was perfect. I easily understood what to do. I didn’t
know that it does most of the work for you in terms of
refining the box.” - P17 (SN-DM)

Participants provided a number of miscellaneous comments about
the system that were by-products of the annotation interface rather
than the system itself, such as the interface preventing annotators
from dragging an annotation box edge beyond the bounds of an
image or rendering adjusted annotations as if they are immutable
on rare occasion.

The primary criticism of Snapper’s usability was tied to the
consistency of its annotation adjustment. 10 participants noted the
frequency of incorrect adjustments made by Snapper as a factor
that influenced their accuracy and speed::

“The bounding box made would sometimes shrink incor-
rectly around a subject. For example, if I put a bounding
box around a person, the box would shrink too much
and not capture the person’s head and arms fully.” - P16
(SN-DM)

Snapper’s adjustment behavior was often mentioned by 3 partici-
pants when describing positive and negative aspects of other anno-
tation modes. For example, five participants described being “100%
in control” (P15, SN-GT) as a key strength for the Baseline annota-
tion mode after having already used Snapper. Even then, sentiments
related to Snapper were more positive than the Baseline and Ex-
treme Clicking modes due to Snapper making “the labeling much
faster than it would be without it” (P6).

Importantly, annotators experiences with Snapper are grounded
in an existing annotation mode in which they may have more famil-
iarity and experience. In describing the ease-of-use of the Extreme
Clicking mode, 5 participants remarked on the the simplicity of Ex-
treme Point annotation while highlighting a brief learning period:

“The [Extreme Point] tool was fairly simple to learn
with an easy enough learning curve. I felt I could com-
fortably use the tool with accuracy within the first few
annotation tasks ” - P12 (SN-GT)

Mirroring the demographics of P12, P10 has been engaged in anno-
tation work for more than year, uses a computer mouse for their
annotation tasks, and reports “Never” performing Extreme Point
annotation tasks. Despite these similarities in demographics, P12
recognizes the value of Extreme Point annotation, but notes a prac-
tical challenge in adopting the mode of annotation:

“This task was tedious. [Extreme Point] annotation is
intuitively simple and feels like it ought to work well. In
practice, it might do so, but I think months of practice
would be required. I achieved accuracy only through
extreme care and slow speed.” - P10 (SN-GT)

Finally, as shown in Figure 7a, Snapper’s annotation mode was
identified by 12 participants as the most preferred mode of annota-
tion in the study. Similarly, as shown in Figure 7b, Snapper was
reported by the majority of annotators as the annotation mode that
enabled them to be both fastest and most accurate with their la-
beling. In contrast to criticisms related to adjustment inconsitency,
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Figure 8: Scores for each the six dimensions of the NASA-TLX across the three annotation modes as observed.
A response of 1 indicates “Low” while a response of 10 indicates “High”.
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Figure 9: Responses for the Team Productivity and Performance instrument between SN-GT and SN-DM conditions.
A response of 1 indicates “Strongly Disagree” while a response of 5 indicates “Strongly Agree”.

seven participants noted that the annotations produced by Snapper
may require correction, but the correction was usually a smaller
amount of work than amount of work required by other annotation
modes:

“[Snapper was] probably the best of the three. [...] the
tool was able to take out some of the preliminary work
with the auto-sizing. The auto-sizing didn’t always
work, but it was easy to correct if it didn’t. So, the change
was a net positive.” - P13 (SN-GT)

5.1.2 Reducing Cognitive Load in Object Annotation. Snapper’s
positive first impressions are interlinked with its ability to reduce
cognitive effort. For example, Snapper allowed one annotator “to
be sloppy/broad about what I was putting in a bounding box”(P16).
As shown in Figure 7a, the notion of Snapper’s ability to reduce ef-
fort is supported by a visually observable distinction in NASA-TLX
scores between the three annotationmodes. Friedman tests revealed
statistically significant effects of condition on four of the NASA
TLX’s six dimensions: Mental Demand (X2(2) = 10.3, p=0.006), Phys-
ical Demand (X2(2) = 12.9, p=0.002), Effort (X2(2) = 10.1, p=0.006),

and Frustration (X2(2) = 8.9, p=0.01). However, we did not find
significant differences for Temporal Demand or Performance. As
shown in Table 4, we observe a statistically significant difference
exists for each of the four dimensions between Snapper and each of
the other two annotation modes. Significant differences in scores
between the other two annotation modes were not observed.

5.1.3 Supporting Object Annotation with Interface Intelligence. Snap-
per introduces interface intelligence into the object annotation con-
text in a way that attempts to offload the necessity of precision.
Within this context, several annotators described Snapper’s auto-
adjustment tool that “covers for me when I slip a bit too far off
the mark” (P3). We observe that perceived trust in Snapper (Table
2; Q1) leans positive (𝜇=3.6; 𝜎=0.9). We specifically find that the
average perceived trust is slightly higher for the SN-DM condition
(𝜇=3.8; 𝜎=0.9) in comparison to the SN-GT condition (𝜇=3.2; 𝜎=0.9),
suggesting that Snapper’s adjustments made using ground truth
data are more mistrusted than those made by Snapper’s machine
learning model. However, a Mann-Whitney U test did not show a
statistically significant difference.
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Figure 10: Annotation accuracy (i.e., IoU) across all 18 participants for each condition.

Table 4: Results of pairwise Wilcoxon Signed Rank tests on
four NASA-TLX dimensions.

Dimension Comparison p r
Mental Demand Baseline x Extreme Clicking 0.535 0.15
Mental Demand Snapper x Baseline 0.002 0.70 **
Mental Demand Snapper x Extreme Clicking 0.018 0.61 **
Physical Demand Baseline x Extreme Clicking 0.309 0.26
Physical Demand Snapper x Baseline 0.001 0.74 ***
Physical Demand Snapper x Extreme Clicking 0.005 0.66 **
Effort Baseline x Extreme Clicking 0.579 0.1
Effort Snapper x Baseline 0.006 0.64 **
Effort Snapper x Extreme Clicking 0.016 0.57 *
Frustration Baseline x Extreme Clicking 0.420 0.20
Frustration Snapper x Baseline 0.009 0.61 **
Frustration Snapper x Extreme Clicking 0.008 0.61 **

By analyzing the Team Productivity and Performance measures
shown in Figure 9, we find that Snapper was generally viewed as
a strong complement for task completion. Average agreement re-
sponses to statements suggest that participants perceive Snapper as
a system that improved personal efficiency (𝜇=3.8; 𝜎=1.0), improved
personal productivity (𝜇=3.3; 𝜎=1.1), and improved team produc-
tivity (𝜇=3.7; 𝜎=0.7). We also find that participants not only agree
that they believe they were necessary for the successful completion
of the task (𝜇=3.8; 𝜎=0.7), but also that they agree that Snapper’s
as having been necessary for successful completion of the task
(𝜇=2.7; 𝜎=1.0). Further, we observe that participants maintain a
desire to work with the tool again (𝜇=4.1; 𝜎=1.0). Mann-Whitney U
tests failed to show a statistically significant difference in responses
between SN-GT and SN-DM conditions for all six statements.

5.2 Annotation Quality
To address RQ2, we analyzed annotation quality primarily through
a quantitative lens using ground truth labels. Turning first to our
participants’ qualitative responses about the accuracy of Snapper,
we find that the most common response was that Snapper increased
the accuracy of their labels. Even for those participants who ac-
knowledged that further adjustments were sometimes required
after using Snapper, many felt that these adjustments were often
smaller or fewer and farther in between.

“I felt like the automatic labeling function was quite
accurate. Only a handful of times did I have to adjust
the bounding box slightly, and even less times did i have
to re-create it around the subject again.” - (P12, SN-DM)

Although noting that accuracy was very good for most objects,
a few participants identified cases where Snapper’s label accuracy
was reduced, including when objects were obstructed or far off in
the distance.

“Accuracy was excellent for unobstructed people mid-
frame. People near the edge of the frame were often
reduced to smaller boxes by the tool that couldn’t be
fixed, hurting accuracy. For whatever reason I found it
easier to do manual adjustments with this tool vs the
other experimental tools.” - (P10, SN-DM)

With these thoughts in mind, we structure the following sec-
tion as such. First, we look generally at how Snapper’s accuracy
compared to the other annotation modes, and then we look at how
Snapper performed on objects of varying sizes in comparison to
the other annotation modes.

5.2.1 General Annotation Quality. We first turn our attention to
Figure 10 showing annotators’ accuracy for all three annotation
modes while performing our study. Accuracy was measured as
the IoU of participants’ annotations with ground truth labels, and
annotations with an IoU value of 0 were discarded from this anal-
ysis. This was done under the assumption that an IoU value of 0
indicates that the given object was not annotated, and therefore
this value does not contribute towards understanding the accuracy
of a participants’ annotations as it relates to the three modes.

Visually, we see that accuracy is generally high across partic-
ipants and annotation modes; the average IoU value was 0.84.
In terms of difference in annotation quality across conditions, a
Kruskal-Wallis test revealed a significant difference in accuracy
across the three modes (X2(2) = 240, p < 0.001). To find specific
differences, we conducted post-hoc Mann-Whitney tests with Bon-
ferroni correction, showing a significant increase in annotation
quality for annotations created using Snapper as compared to the
baseline bounding box annotation (p < 0.001, r = 0.73) and Extreme
Clicking (p < 0.001, r = 0.76). However, a Mann-Whitney U test
found a significant increase in annotation quality when using the
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Table 5: Average IoU scores across the five size labels with
standard error reported in parentheses.

XS Small Medium Large XL All
BL 0.66 (0.2) 0.76 (0.2) 0.86 (0.1) 0.86 (0.1) 0.94 (0.0) 0.84 (0.1)
EC 0.65 (0.2) 0.76 (0.2) 0.85 (0.1) 0.85 (0.1) 0.94 (0.1) 0.84 (0.1)
SN-GT 0.87 (0.2) 0.88 (0.2) 0.94 (0.1) 0.97 (0.1) 0.96 (0.1) 0.94 (0.1)
SN-DM 0.58 (0.2) 0.72 (0.2) 0.83 (0.1) 0.90 (0.1) 0.93 (0.1) 0.83 (0.1)
All 0.67 (0.3) 0.77 (0.2) 0.87 (0.1) 0.92 (0.1) 0.94 (0.1)

SN-GT mode as compared to the SN-DM mode, indicating the pos-
sibility that Snapper’s improved quality may be largely driven by
its Ground Truth iteration.

5.2.2 Annotation Quality by Object Size. Table 5 shows the mean
IoU of all participant annotations (except those with an IoU value of
0) binned by object size for each annotation mode. Friedman tests
were conducted to determine differences in accuracy between the
three larger categories of annotation modes, where SN-GT and SN-
DMwere taken together to represent the Snapper mode. Altogether,
no statistically significant differences were found between the three
annotation modes for any of the five defined size groups, suggesting
that across the three modes there was generally no difference in
annotation accuracy.

Table 6: Mann-Whitney U test results comparing accuracy
between SN-GT and SN-DM across object sizes.

Size U Z p r
Extra Small 2026 -6.21 < 0.001 0.35 ***
Small 15010 -9.04 < 0.001 0.55 ***
Medium 74756 -15.21 < 0.001 0.85 ***
Large 21864 -11.94 < 0.001 0.66 ***
Extra Large 5395 -6.2 < 0.001 0.34 ***

Lastly, we compare annotation accuracy between the SN-GT and
SN-DM modes. We ran Mann Whitney U tests for comparisons
across the five object sizes, and the results are shown in Table 6.
The SN-GT mode was found to result in more accurate annotations
for every object group as compared to the SN-DM mode.

In sum, although we find no difference in terms of accuracy from
the annotation modes across the different object classes represented
in this study or different object size groups, we do find that the
SN-GT mode consistently outperforms the SN-DM mode for all
object sizes. In terms of the IoU values themselves across the ob-
ject size groups, we see that Snapper in general performs best with
larger objects, validating some of our participants’ frustrations with
using Snapper for smaller objects that are at a distance. This also
lends itself towards the recommendation that Snapper be used pre-
dominantly for Medium to Large size objects for better annotation
quality.

5.3 Accelerating Annotation Time
Despite their familiarity with Bounding Box annotation, many par-
ticipants consistently reported the baseline tool as decreasing the
speed of their annotation, with specific language such as “meticu-
lous” (P14), “a slower workflow” (P2), or involving “a lot of wasted
time” (P12) to describe the process. The feelings towards the effi-
ciency of Extreme Clicking were more mixed, with some partici-
pants appreciating the simplicity of only having to do 4 clicks to

create their annotation, while others found determining where to
place these clicks to be more difficult.

“I felt this was the fastest of the three tools used. I had no
issues being speedy with this tool. The ease of being able
to just click to create a point and then have a bounding
box be created from those points made this very easy to
be quick and accuracte.” - (P2, EC)
“I took a lot of time to match each point as correctly as
possible. What seems easy to eyeball actually requires
making several pixel-length guestimates, then adjusting
repeatedly.” - (P10, EC)

On the other hand, our participants largely reported Snapper as
helping to improve the speed of their annotation process, combining
the familiarity of traditional bounding box annotation with the
find-and-snap tooling that allowed for less precision in their initial
annotation creation.

“This sped up my processing considerably! I was able
to annotate images with multiple bounding boxes in
seconds, which is super fast.” - (P15, SN-GT)
“The tool made the labeling job much much faster. Not
needing to be as precise as usual shaved off a few seconds
during labeling” - (P12, SN-DM)

To address RQ3 and explore how well our participants’ percep-
tions of their annotation speed aligned with reality, we analyzed
timestamped telemetry data to calculate counts and time spent
on annotation activities. We first explore how annotation mode
impacted time spent on the annotation task as a whole, and we
then specifically focus on annotation mode’s impact on time spent
creating and editing annotations. A visual representation of anno-
tation times broken down by creation and editing time can be seen
in Figure 11.

5.3.1 Analyzing Task Time. For this analysis, we define task time as
the temporal difference between the time at which the annotation
interface has loaded and the time at which the Submit button was
clicked. The average time spent on each task varied across the BL
(𝜇=81.7s; 𝜎=99.3), EC (𝜇=117.4s; 𝜎=321.4), SN-GT (𝜇=63.4s; 𝜎=92.2),
and SN-DM (𝜇=47.1s; 𝜎=65.3) conditions. Aggregating SN-GT and
SN-DM to represent the Snapper annotation mode, we find that
using Snapper led to a 33% reduction in time per task as compared
to the BL, while using EC led to an increase of 44% in time per task
as compared to the BL.

A Friedman test revealed a statistically significant difference in
the time participants spent in completing tasks across the three
conditions (X2(2) = 99.5, p < 0.001). Post-hoc tests using Wilcoxon
tests with Bonferroni correction showed that significant differences
in total job time exist between the BL and SN conditions (p < 0.001,
r = 0.39) and between the EC and SN conditions (p < 0.001, r = 0.43),
but not between the BL and EC conditions. Using a Mann-Whitney
U test, we also observe a statistically significant difference in task
time between the two Snapper conditions (U = 34,630, Z = -2.17, p
= 0.03, r = 0.48). To summarize, among the three annotation modes,
participants spent significantly less time on the task when they
used Snapper as compared to EC and traditional bounding box
annotation. Participants who used SN-DM also spent significantly
less time on the task than those who used SN-GT.
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Figure 11: Time spent on annotation creation (CREATE) events [Top] and annotation edit (EDIT) events [Bottom] across all 18
participants in seconds. Each barplot is shaded per the condition from which it was collected.

5.3.2 Analyzing Annotation Creation Time. We define annotation
creation time as the temporal difference between an annotator
initiating the creation of an annotation (i.e., mouse-down on the
annotation canvas) and completing the creation (i.e., a subsequent
mouse-up), and we define cumulative annotation creation time as
the sum of all creation time for a given annotation mode. We see
differences across the annotation mode between BL (6,155 seconds),
EC (11,250 seconds), and Snapper (4,197 seconds). Of this cumu-
lative annotation creation time for Snapper, 56% of it came from
participants who used the SN-GT mode. These results show that
compared to the BL mode, EC led to an increase in annotation
creation time by 87% while Snapper led to a decrease in annotation
creation time by 32%.

Average annotation creation time varied across the BL (𝜇=3.7s;
𝜎=2.5), EC (𝜇=6.9s; 𝜎=16.8)2, SN-GT (𝜇=2.9s; 𝜎=1.9), and SN-DM
(𝜇=2.2s; 𝜎=1.3) conditions. Through a Friedman test, we find that
a statistically significant difference exists in the time participants
spent creating annotations across the three conditions (X2(2) =
252.5, p < 0.001). Post-hoc tests using Wilcoxon tests with Bonfer-
roni correction suggest that these differences exist between the BL
and EC conditions (p < 0.001, r = 1.0), between the EC and SN con-
ditions (p < 0.001, r = 1.7), and between the BL and SN conditions
(p < 0.001, r = 0.9). Using a Mann-Whitney U test, we also observe
a statistically significant difference in per-annotation creation time
between the two Snapper conditions (U = 430646, Z = -8.63, p <
0.001, r = 0.48). Similar to our results on task time, we find that par-
ticipants spent less time creating annotations when using Snapper
as compared to either the BL or EC, and those who used SN-DM
also spent less time creating than those using SN-GT. In addition,
participants spent significantly more time creating annotations
when using EC as compared to when they used the BL annotation.

5.3.3 Analyzing Annotation Edit Time. We define annotation edit
time as the temporal difference between an annotator initiating the
modification of an existing annotation (i.e., a mouse-down on the
annotation edge) and completing the creation (i.e., a subsequent
mouse-up), and we define cumulative annotation edit time as the
sum of all edit time for a given annotation mode. We see differ-
ences across the annotation mode between BL (3,840 seconds), EC
(741 seconds), and Snapper (1,557 seconds). Of this cumulative an-
notation edit time for Snapper, 75% of it came from participants
who used the SN-GT mode. These results show that compared to
2This replicates the finding for average creation time in Papadopoulos et al. [66]

the BL mode, EC led to a decrease in annotation edit time by 82%
while Snapper led to a decrease in annotation edit time by 59%.
Additionally, participants who received the SN-GT mode spent a
considerably longer amount of time editing their annotations than
participants who received the SN-DM mode.

We saw the following average annotation edit times across the
BL (𝜇=2.2s; 𝜎=1.9), EC (𝜇=2.4s; 𝜎=2.2), SN-GT (𝜇=2.1s; 𝜎=1.5), and
SN-DM (𝜇=1.5s; 𝜎=0.7) conditions, following a similar trend as an-
notation creation times. Using similar tests, we observe the presence
of a statistically significant difference in the cumulative amount of
time spent editing a given annotation across the BL, EC, and SN
conditions (X2(2) = 50.6, p < 0.001). Post-hoc tests using Wilcoxon
tests with Bonferroni correction reveal that differences exist be-
tween the BL and SN conditions (p = 0.002, r = 0.18), and between
EC and SN conditions (p < 0.001, r = 0.21), but not between the BL
and EC conditions. As for the differences between the two Snap-
per conditions, we did not find a statistically significant difference
in per-annotation edit time when a Mann-Whitney U test was
performed. Similar to per-annotation creation time, we find that
per-annotation edit time was reduced when participants used Snap-
per (and particularly SN-DM) as compared to either the BL or EC
annotation modes. This finding is perplexing given that we found
that EC had the lowest cumulative time spent for edit events by far,
but also has the highest average annotation edit time. However, it
can be explained by looking at the total number of events across
the three annotation modes. Participants using EC performed far
fewer edit actions cumulatively (𝑁 = 300) than either BL (𝑁 = 1,762)
or Snapper (𝑁 = 825). Given that less edit events were performed,
the average time per edit event for EC is inflated.

6 DISCUSSION
Our study provides insight into the utility of assistive tooling for an-
notator productivity. Prior work has proposed numerous techniques
that are often discussed as being advantageous toward traditional
approaches (e.g., standard bounding box annotation) [41, 55, 87].
Here, we find that annotators are receptive to intelligent interface
tools that help them to accomplish annotation tasks and increase
their productivity. In comparing the system’s mode of annotation to
alternatives, we find that Snapper enables annotators to accomplish
annotation tasks more quickly than other modes of annotation in a
way that reduces aspects of cognitive load and does not diminish
label quality.
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6.1 A Frontier for AI-Assisted Annotation
Our research demonstrates how an established interface technique
– snapping – can be interactively intertwined with an object detec-
tion model to instill annotator productivity. As a system, Snapper
drew inspiration from prior studies that have demonstrated the
utility of snapping [10, 11, 49]. Unlike these prior studies, our appli-
cation of snapping is targeted at the domain of image annotation,
which unlike other application domains (e.g., drawing and image
editing applications), often comes with constraints (e.g., temporal
demands) that can vary from day-to-day for annotators [85]. For
these reasons, understanding how Snapper’s associated effects and
perceived utility shift with longitudinal use is an important area of
interest for future work.

Our study provides a narrow example that demonstrates how the
design of annotation interfaces can draw from the area of computer-
assisted selection. Drawing and image editing applications (e.g.,
Adobe Photoshop, GIMP, etc.) provide a significant number of refer-
ential inspirations for new assistive tool concepts for long, tedious
annotation tasks [68]. For example, to what extent might Mortensen
and Barrett’s “Intelligent Scissors” concept [61] be leveraged for as-
sisting annotators in semantic segmentation tasks? How does this
concept compare to the state-of-the-art assistive segmentation tools,
such as Maninis et al. [55]’s DEXTR? There remains an open fron-
tier for research that explores new tooling for further enhancing
annotator productivity with AI-assisted annotation.

6.1.1 Considerations for Annotation Modes. Our study provides
a baseline measure of performance for three annotation modes.
Contrary to findings from prior research, our findings not only
suggest that Snapper’s annotation mode yields a smaller amount
of annotation time than Papadopoulos et al. [66]’s Extreme Click-
ing approach, but also that traditional bounding box annotation
does as well. In 2017, Papadopoulos et al. estimated that annota-
tors require approximately 7 seconds to annotate each object. We
replicate their finding by observing that our study’s participants
yielded an average task time of 6.9 seconds when using Extreme
Clicking, which reinforces our quantitative findings regarding how
annotators spend their time.

Beyond the notion of tooling, our research carries new design im-
plications for the fundamental nature of annotationmodes. Through
Snapper, we introduced a new annotation mode named “Find-and-
Snap” that automatically adjusted bounding box annotations in
real-time. Our demonstration with Snapper is only one example
of how such functionality can be facilitated at the level of an “an-
notation mode”. An alternative mode could, for example, leverage
Snapper’s auto-adjustment feature with Papadopoulos et al. [66]’s
Extreme Clicking approach, allowing an adjustment to take place
after the forth extreme point has been clicked. For machine learning
and interaction design researchers, a wealth of opportunity exists in
understanding the strengths and shortcomings of these annotation
modes as foundations for machine-assisted support.

6.1.2 Annotation as a Task for Human-AI Collaboration. An im-
portant facet of Snapper’s interactive design is that it, by design,
introduces a new form of collaboration between a human annotator
and machine learning model. In considering the unique constraints
associated with the domain of annotation (i.e., annotators need to

move quickly from task to task), we broadly motivated Snapper’s
design with a select set of established guidelines for engineering
Human-AI systems [4, 35]. Despite the system’s inability to convey
(i.e., graphically, audibly, or in plain text) how or why an annota-
tion will be adjusted, we find that annotators still found significant
utility in Snapper. However, we also found that annotators view
these capabilities as significantly important. Understanding how to
convey how and why an annotation is being adjusted in a manner
that is quickly “digestable” to annotators remains an open question.

Despite being beyond the scope of our study, one caveat of in-
troducing Snapper directly into the annotation task is that we may
unintentionally introduce a bias into annotators’ decision-making
processes [31]. Our data suggests that annotators across both Snap-
per conditions trust the Snapper system, generally believing that
the system is capable of producing high-quality adjustments that
require little time and effort to further adjust. Despite this, we find
that many annotators do, in fact, edit Snapper’s adjustments. How-
ever, it remains unclear if the annotations created by Snapper’s
auto-adjustment procedure would mirror the annotations that the
annotators would’ve created without the system’s assistance. An
important step for subsequent research is examining the develop-
ment of mental models that annotators developwhen using Snapper,
giving particular attention to understanding system reliance and
the distinctions between Snapper-generated and user-generated
annotations. Generally, there is a significant opportunity for ex-
ploring approaches that communicate this information in a fashion
that is both interpretable and explainable to annotators.

6.2 Considerations for Behavioral Differences
Our study sheds light on the notion that preferences and experi-
ence may shape desirability of annotation tools whether they be
supported with interface intelligence or otherwise. In exploring
how Snapper supported existing image annotation practices, we
found a small number of indicators related to individuality that
may affect how annotators perceived the utility of the system. Prior
work has provided numerous examples for behaviorally profiling
annotators in similar ways [16, 33, 73]. Studies of personal pro-
ductivity highlight the growing importance of supporting peoples’
individual practices in their work [39] and engineering systems
that ensure their time is well spent [27]. Mark et al. [57] shows that
the efficacy of such tools can vary significantly between people.

Through the lens of telemetry, Figure 11 highlights that peo-
ple may, in fact, differ significantly in the activities (i.e., creation
or editing) that they tend to devote their time toward. Snapper’s
interaction design operates by extending only the annotation cre-
ation event, indicating that the system may unintentionally provide
support more effectively for annotators who spend most of their
time creating annotations. One direction for future work centers
on extending Snapper’s auto-adjustment feature to edit events (i.e.,
in which Snapper would recommend adjustments while the cor-
ner of an annotation is dragged). Within the broader purview of
supporting individual differences, it may be useful to explore how
different types of annotators can be automatically inferred (e.g., via
telemetry data) such that assistive annotation tools can be used in a
more personalized fashion. While additional research is necessary,
prior research suggests this is a promising direction [74].
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6.3 Limitations
Our study has several limitations. First, our study used images
from an established dataset with readily-available ground truth
information. We are unable to draw conclusions about the efficacy
of Snapper in other dataset contexts that may be distinct in im-
age quality, the number of objects in frame, or domain-specific
characteristics. Second, our study was conducted with a unique
population of annotators from one company.We are unable to make
claims about Snapper’s efficacy with other annotator populations
that may differ in experience or use alternative input devices (e.g.,
trackpads). Finally, our findings related to the SN-DM condition
are tied Snapper’s current object detection model. Though we draw
comparisons between Snapper’s actual model and a simulated ora-
cle model (i.e., the SN-GT condition), we cannot draw conclusions
about the efficacy of using models of greater or lesser performance.

7 CONCLUSION
In this paper, we introduced and evaluated Snapper, an interactive
and intelligent system that enhances annotator productivity in 2D
object detection. tasks with model-generated adjustments. Through
a mixed-design user study with full-time annotators, we find that
Snapper allows annotators to complete bounding box annotation
tasks 39% more quickly than other modes of annotation in a way
that requires less cognitive load at no reduction to annotation qual-
ity. Further, we observe that annotators perceive Snapper as a tool
that is interactively intuitive, trustworthy, and helpful. Through
our study, we demonstrate the value in engineering interactive
systems that empower annotators in being more productive with
automation alongside the challenges that come with it.
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