

Characterizing Time Spent in Video Object Tracking Annotation Tasks: A Study of Task Complexity in Vehicle Tracking

Amy Rechkemmmer¹, Alex C. Williams², Matthew Lease^{2,3}, and Li Erran Li² Purdue University¹ AWS AI, Amazon² The University of Texas at Austin³ HCOMP 2023 Delft, Netherlands

The Data Annotation Industry has Widespread Implications

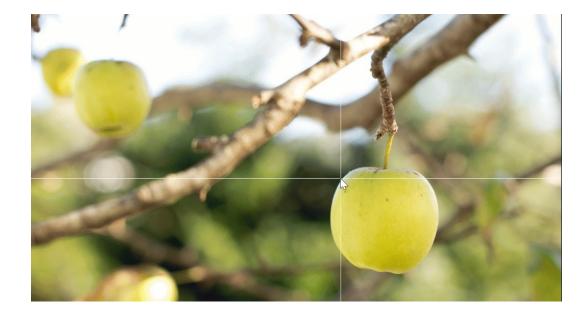
In-house, trained workforce performing complex annotation tasks

Ex: Amazon SageMaker Ground Truth, Scale AI, Sama

The Data Annotation Industry has Widespread Implications

γΟΤΑ

Data Annotation and Labeling Market worth \$3.6 billion by 2027, growing at a CAGR of 33.2%: Report by ^{In-]} MarketsandMarkets™



Ex: Amazon SageMaker Ground Truth, Scale AI

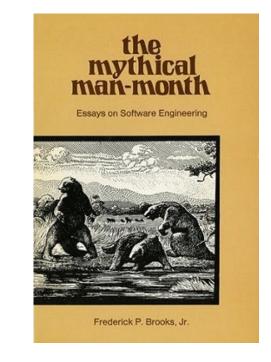
The Data Annotation Industry has Widespread Implications

... but the work is time-consuming and tedious

This data is often proprietary, making it unsuitable for crowd workers.

- 1. Only label apples that are a certain distance from the ground
- 2. Only label apples that are of a sufficient size

Understanding Productivity is Challenging


Output/Time

Number of boxes moved per hour

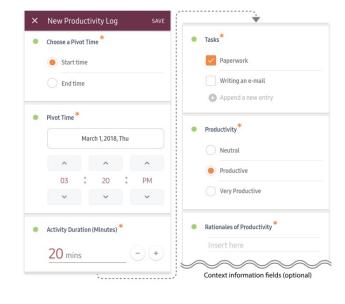
Number of lines of code written per hour?

For knowledge-based tasks, the threshold for acceptable output and the path to get there are often unclear

Determining quality is difficult/subjective --> Understanding time spent is a common proxy

Lessons on Understanding Time in Knowledge Work

Understanding How Time is Spent


TRACKERS TRIGGERS	SERVICES	STRUCTURE	REMINDERS	TRACKERS TRIGGERS	SERVICES	TRACKERS TRIGGERS SERVICES			
offee		Show on Shortcut		C At specific time					
PTEMBER 15 TODAPS 7:16 PM 0		FIELDS		12:00 ам		🕂 fitbit.			
ixercise		G Sleep Time	* ×	In 4 days We Step Comparison Experiment					
EVER LOGGED		05:06 PM	, Jan 23, 2017	Everyday	~	Fitbit Get data from Fitbit server			
leep	~	05:06 PM	Jan 23, 2017	Fires when the data passes the threshold					
IDAY TODAYS 1:20 AM 1	^	CO Sleep Time Fitbit		Productivity Score RescueTime		Step Count Get step count during a specific range			
Edit 🗮 Data List 🚯 Chart	s X Remove	t Sleep Quality	* ×	Productivity Drops		Total Distance Get total distance walked during a specific range			
leer		3	0	Listening to event	~	Sleep Time			

Kim et al. "OmniTrack: a flexible self-tracking approach leveraging semiautomated tracking." UIST (2017).

Timeline									
Interval mode: Last duration ~									
Show last: 24h 🗸									
Events shown: 4244							Drag to	pan and sci	oll to zoom
aw-stopwatch									
aw-watcher-afk_erb-laptop2-arch	not-afk		afk	afk not-afk					
aw-watcher-vim_erb-laptop2-arch									
aw-watcher-web-chrome									
aw-watcher-web-firefox	tr (g ç	pi fir	travis-c	i.org		s stack	87532b0	t g +	1 Io:
aw-watcher-window_erb-laptop2-ar	ch II FF	Fi Fir	jetbrair	ns-jetlj je	tbra j i j jet		Fi i jej je		4 E I
calendar									
ical-import									
	16:25	16:30	16:35	16:40	16:45	16:50	16:55	17:00	17:05

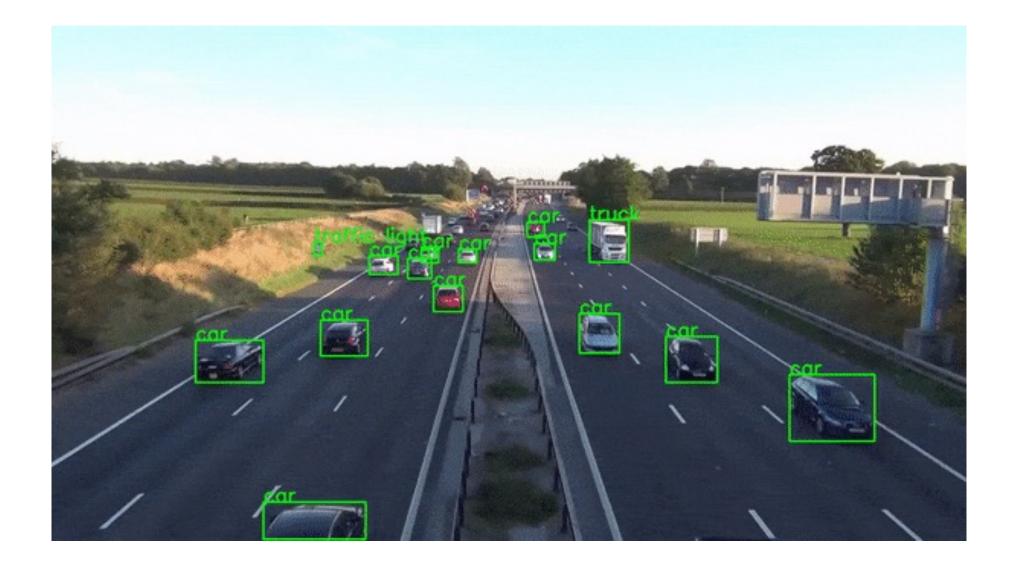
Screen Time All Devices Devices SCREEN TIME Daily Average 7h 24m I8% from last week Productivity & Finance Other Social 8h 32m 5h 44m 10h 49m Total Screen Time 44h 25m Social 2 hr MOST USED SHOW CATEGORIES 🔗 Safari 🖂 Mail Support Apple's ScreenTime

Understanding How Workers Perceive their Time Spent

Kim et al. "Understanding personal productivity: How knowledge workers define, evaluate, and reflect on their productivity." CHI (2019).

> Guillou et al. "Is your time well spent? reflecting on knowledge work more holistically." CHI (2020).

https://activitywatch.net/

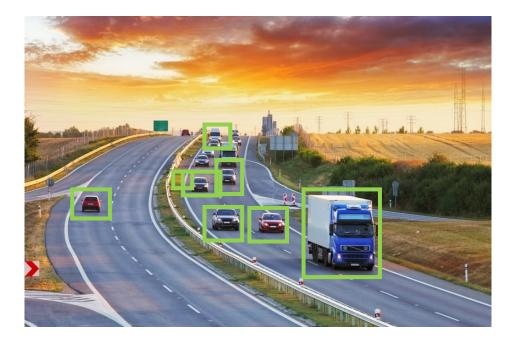

task complexity

worker experience

How do **task complexity** and **worker experience** impact:

- 1. Time spent performing data annotation
- 2. Worker perceptions of time spent performing data annotation and other assistive activities

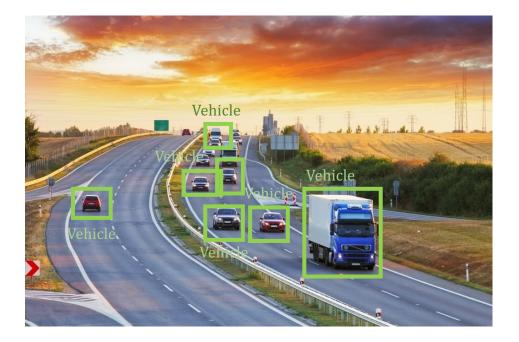
40 full-time annotators at a largescale technology corporation



Working on a real-world proprietary task involving vehicle tracking on city streets and highways

Interface Functionality

- Manual Creation
- Edit
- Delete
- Predict Next
- Copy Frame
- Zoom In
- Zoom Pan
- Play Video
- Frame Navigation (Forward and Backward)

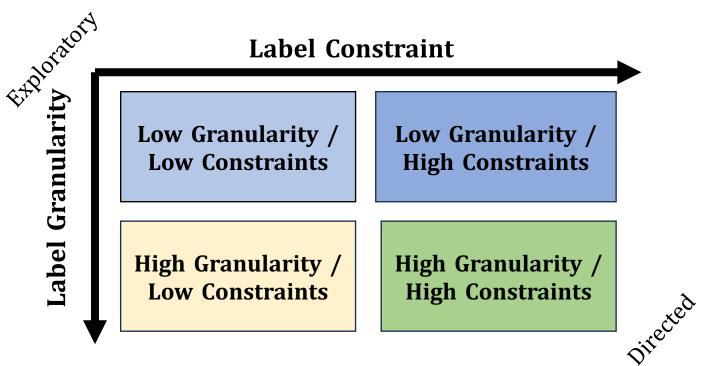


Low Label Constraint
Annotate All Vehicles
Local
Local
Local
Global

High Label Constraint

- 1. Are all of this vehicle's brake lights currently visible in this frame?
- 2. Is this vehicle in the same lane as the POV vehicle or at most on lane over?
- 3. Is this vehicle moving in the same direction as the POV vehicle?
- 4. Does this vehicle have its brake lights on at least once at any point in this video?

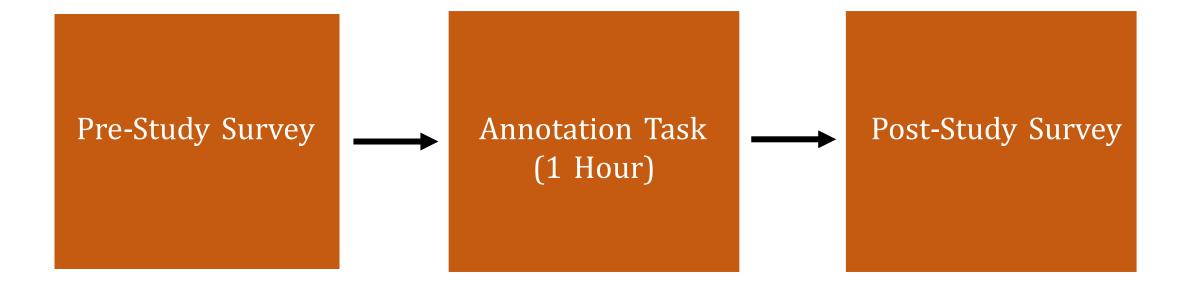
Low Label Granularity

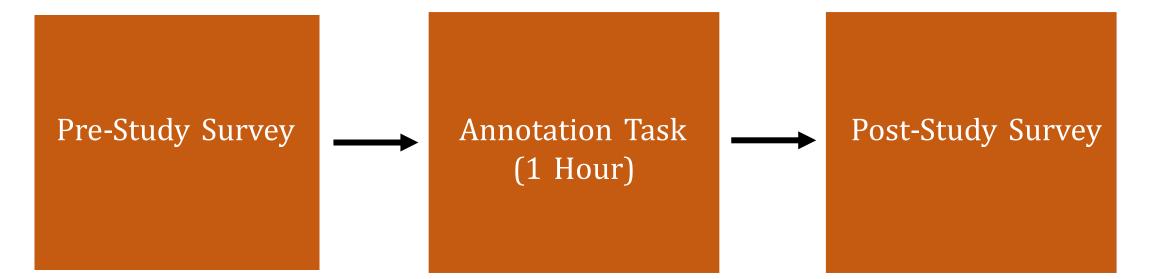

Vehicle

High Label Granularity

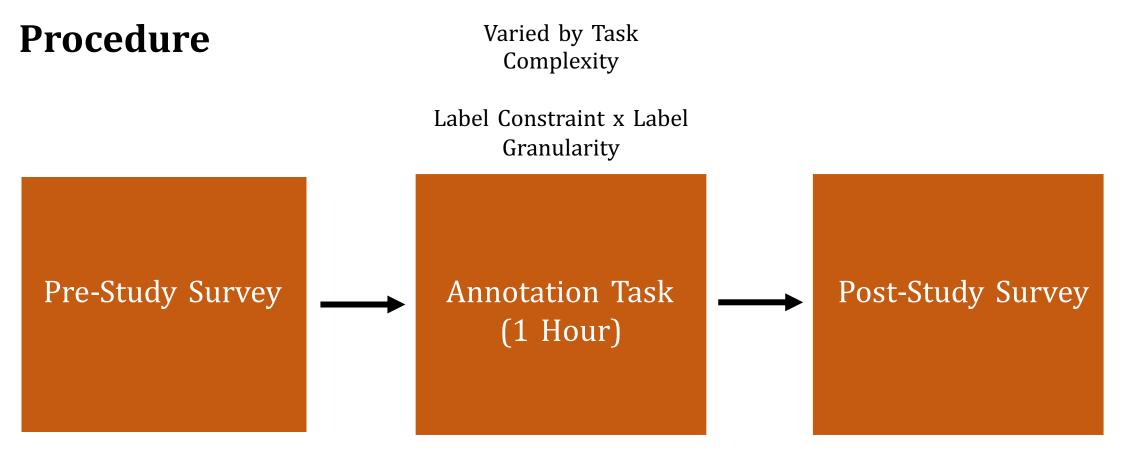
Car, Truck, Van, Motorbike, Bus

2 x 2 Task Complexity Experimental Design (10 workers per condition)

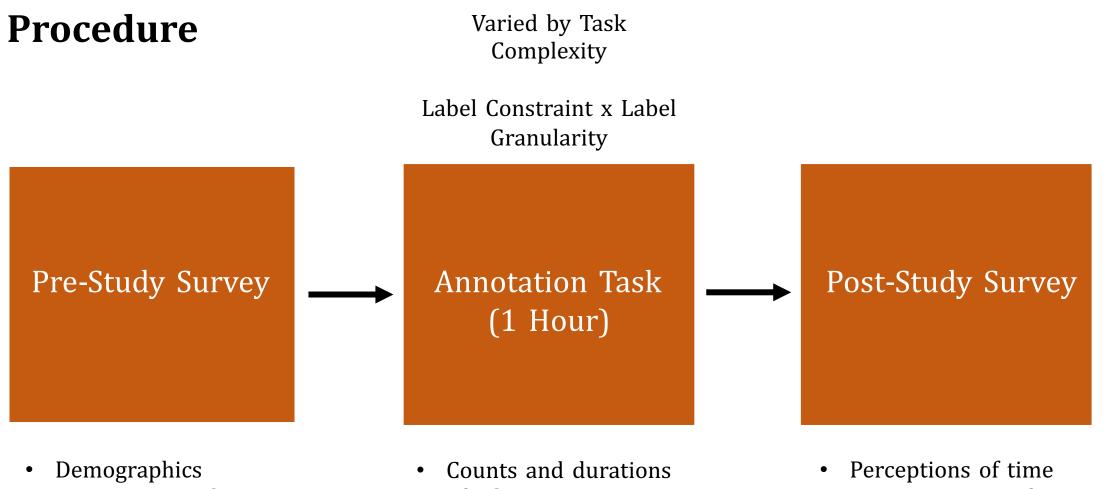

Worker Experience


High Experience: >= 6 months VOT Experience (14 workers)

Low Experience: < 6 months VOT Experience (26 workers)


Procedure

Procedure



- Demographics
- Experience with VOT
- Estimates of task activity time (Likert)

- Demographics
- Experience with VOT
- Estimates of task activity time (Likert)

 Counts and durations of telemetry events collected through task interface

- Experience with VOT
- Estimates of task activity time (Likert)

 Counts and durations of telemetry events collected through task interface (more details on next slide)

- Perceptions of time spent preparing for task (Likert)
- Perceptions of time spent during task (Likert)

Telemetry Counts

- Manual Creation
- Edit
- Delete LABEL

ZOOM

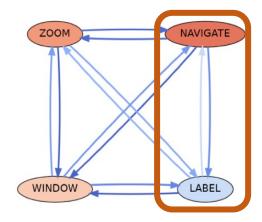
- Predict Next
- Copy Frame
- Zoom In
- Zoom Pan
- Frame Navigation (Forward and Backward)
 NAVIGATE

Telemetry Durations

Manual Creation
Edit
Play Video
LABEL
NAVIGATE

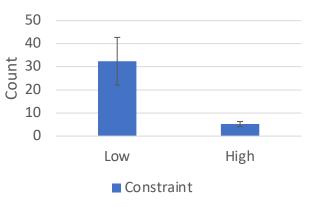
We ran GLMs to analyze the impact of task complexity and worker experience (ind. vars) on our recorded count and duration variables (dep. vars).

We also developed state diagrams to visualize the most common paths between annotation activities by different sets of workers.

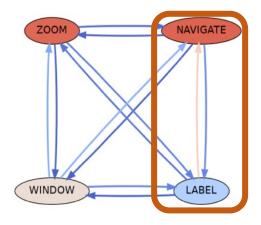


How do **task complexity** and **worker experience** impact:

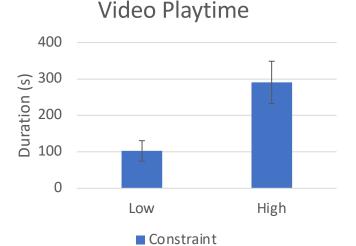
1. Time spent performing data annotation


2. Worker perceptions of time spent performing data annotation and other assistive activities

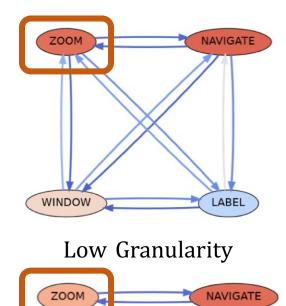
The Effect of Label Constraint on Time Spent



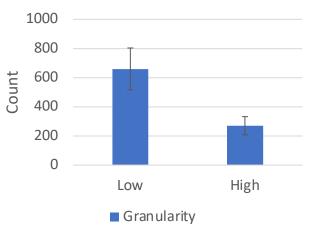
Workers assigned to a high constraint task created **less manual annotations** and spent **more time navigating** through the frames.

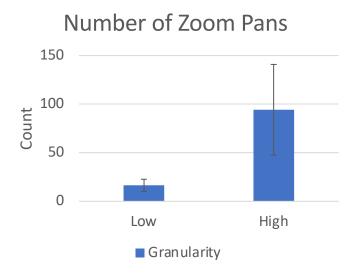

Number of Manual Annotations

Low Constraint



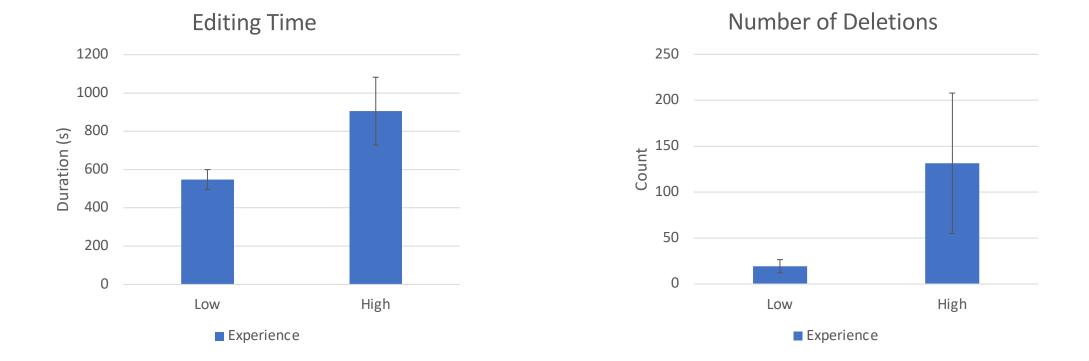
High constraint tasks also led to workers transitioning directly from labeling to navigation more frequently.


High Constraint


The Effect of Label Granularity on Time Spent

Granularity impacted worker zoom behaviors.

Number of Zoom Ins



High Granularity

WINDOW

LABEL

The Effect of Worker Experience on Time Spent

Workers with higher experience with VOT tasks spent **more time editing** annotations and **deleted more annotations**

How do **task complexity** and **worker experience** impact:

- 1. Time spent performing data annotation
- 2. Worker perceptions of time spent performing data annotation and other assistive activities

Worker Perceptions of Time and Assistive Activities

- The top 3 activities that workers perceived to spend their time on were:
 - (1) zooming/panning in the interface,
 - (1) playing through the video frames, and
 - (3) performing assistive activities *prior* to working on the task
- Even though the average participant spent 3 times the amount of time editing annotations than playing through the video, editing annotations was overall ranked 5th in terms of time consumption
- 90% of participants engaged in assistive activities prior to the task, and 65% engaged in these activities during the task
- We found no impact of task complexity or worker experience on worker perceptions of time during the task or during assistive activities

Immediate Implications

- Providing helpful nudges to workers who are starting out or having trouble with what to do next
- Better incorporation of resources directly into task interface for easier reference
- Greater understanding needed of the relationship between time spent and label quality, especially for experienced annotators

Discussion

- Rethinking how we capture time spent
- Tracking time vs. surveillance
- Assisting worker productivity while considering worker differences

Thank you!

contact: arechke@purdue.edu

Alex C. Williams AWS AI, Amazon

Matthew Lease The University of Texas at Austin and Amazon

Li Erran Li AWS AI, Amazon

Read the full paper here!

I will be looking for postdoctoral positions within the next 1-1.5 years. Please come chat with me if you are interested in designing systems for crowd worker wellbeing, collective action, or social computing that make use of crowd intelligence!