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Abstract
Video object tracking annotation tasks are a form of complex
data labeling that is inherently tedious and time-consuming.
Prior studies of these tasks focus primarily on quality of the
provided data, leaving much to be learned about how the data
was generated and the factors that influenced how it was gen-
erated. In this paper, we take steps toward this goal by exam-
ining how human annotators spend their time in the context of
a video object tracking annotation task. We situate our study
in the context of a standard vehicle tracking task with bound-
ing box annotation. Within this setting, we study the role of
task complexity by controlling two dimensions of task de-
sign – label constraint and label granularity – in conjunction
with worker experience. Using telemetry and survey data col-
lected from 40 full-time data annotators at a large technology
corporation, we find that each dimension of task complexity
uniquely affects how annotators spend their time not only dur-
ing the task, but also before it begins. Furthermore, we find
significant misalignment in how time-use was observed and
how time-use was self-reported. We conclude by discussing
the implications of our findings in the context of video object
tracking and the need to better understand how productivity
can be defined in data annotation.

Introduction
As machine learning continues to advance, we see its rise
in both the number of domains it is impacting and the over-
all complexity of the challenges it solves (Jean et al. 2016;
Kube, Das, and Fowler 2019). As such, the training data that
is fundamental to these advancements must similarly be able
to keep up in both scope and complexity, requiring com-
plex and domain-specific annotations to further this growth.
Though much of the literature on facilitating complex data
annotation has been focused on independently contracted
workers on platforms such as Amazon Mechanical Turk and
Upwork (Bernstein et al. 2010; Retelny et al. 2014; Doroudi
et al. 2016; Dow et al. 2012), we are seeing an increase in
commercial data labeling services in which full-time anno-
tators are trained and recruited either to work on internal
facing annotation or contracted out to handle other organi-
zations’ data annotation needs (Joshi 2019). One prominent
example of this is within the context of video object tracking
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annotation, which involves annotating objects to be tracked
across video footage. The implications of this type of com-
plex annotation span from augmented reality to autonomous
vehicle training, attracting customers such as Meta, General
Motors, and the U.S. government to enlist these annotation
services (Barnett 2022). However, such complex annotation
not only requires very large amounts of labeled data, but
is also often time-consuming and tedious due to precision
requirements. Therefore, facilitating this process through a
greater understanding of annotator productivity has signifi-
cant value to a variety of stakeholders.

In understanding how to define and optimize data anno-
tator productivity, we can draw parallels to the existing lit-
erature on the productivity of “knowledge workers”, work-
ers whose output is comprised of the creation and transfor-
mation of knowledge. Unlike earlier forms of labor, whose
productivity was easier to measure in terms of quantifiable
outputs (Das and Shikdar 1999; Shikdar and Das 2003), un-
derstanding what it means to be productive as a knowledge
worker is not always straightforward. Given this challenge,
work in this space typically relies on how time is spent and
self-reported perceptions of time and productivity as mea-
sured outcomes, focusing on developing tools and interven-
tions that assist in tracking time and observing workers’ per-
ceptions of their own productivity (Kim et al. 2016, 2017;
Hiniker et al. 2016; Whittaker et al. 2016; Williams et al.
2018). Another avenue that has been explored involves ask-
ing workers to regularly reflect on how they are spending
their time through daily diary entries or a regular check-
in (Kim et al. 2019; Guillou et al. 2020; Meyer et al. 2019).

Though data annotators and traditional knowledge work-
ers both work in complex spaces and primarily utilize men-
tal resources, data annotators are largely disregarded in the
productivity literature. Vondrick, Patterson, and Ramanan
conducted user studies on how workers perform video ob-
ject tracking tasks, but this work a) studies microtask crowd
workers rather than data annotators, b) does not include a
fine-grained study of how time is being spent during anno-
tation, and c) does not include the impact of modern assis-
tive annotation tooling. More recently, there has been effort
to better understand data annotators’ feelings towards their
work (Wang, Prabhat, and Sambasivan 2022), contributing
towards better understanding data annotator well-being and
productivity in a more holistic way, but lacking an under-
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standing of the time spent in complex annotation tasks.
In this paper, we present findings from an exploratory

study of 40 full-time data annotators engaged in a video ob-
ject tracking annotation task that focuses on vehicle tracking
under different levels of label constraint and label granular-
ity. We first find that annotators’ interface activities, specif-
ically video sequence navigation and zooming, are influ-
enced by both labeling constraints and labeling granularity.
Second, we find that experienced annotators spend a larger
amount of time editing and deleting their annotations, in-
dicating that annotators may become more meticulous in
their labeling as they accumulate more experience. Expe-
rience aside, we find that annotators, on average, identify
zooming activity and video playback as the two most time-
consuming activities related to the study’s task. Finally, we
observe that 68% of our annotators spent a portion of their
task time referencing the task’s annotation guidelines not
only before the task began, but also continuously through-
out the task. We conclude by considering the limitations of
telemetry and self-reported time estimates as methods of ac-
curately tracking time, rethinking how we can develop mea-
sures that capture time more holistically without being in-
vasive. We further discuss how our work sheds light on the
next steps of defining what productivity looks like in data
annotation as well as limitations of the work.

Related Work
Our research aims to characterize how time is spent in the
context of video object tracking annotation tasks. In this sec-
tion, we review relevant literature that spans video object
tracking, the emerging work practice of data annotation, and
the use of time in information work.

Video Object Tracking
Video object tracking is a sub-field of computer vision that
focuses on the localization of relevant objects in video se-
quences. Object tracking for 2D video sequences is typically
facilitated with bounding box annotations that contain ob-
jects of interest or with semantic segmentation that tightly
fits to the object’s non-linear shape. Video object tracking
is widely applicable to a myriad of 2D video domains, in-
cluding surveillance, sports analytics, and video editing (Wu
et al. 2022). Similarly, the widespread deployment of ad-
vanced sensing systems has expanded the relevance of ob-
ject tracking to 3D domains, such as autonomous driving and
augmented reality, in which tracking is performed on tempo-
ral three-dimensional data (e.g., LiDAR) (Yao et al. 2020). A
recent report estimates that the video analytics market will
grow to more than $22 billion by 2029, indicating that the
area of video object tracking will only become more promi-
nent as time progresses (Fortune Business Insights 2021).

Modern video object tracking is a highly interdisciplinary
area of research. The foundation of video object tracking is
based on a wealth of methods and techniques that automate
the process of object localization and vary in their approach
(Yilmaz, Javed, and Shah 2006). As many of these vision-
based techniques fail to generalize to all possible use-cases,
human annotation remains the gold standard for ensuring ac-
curate and precise localization of objects (Anjum, Lin, and

Gurari 2021; Vondrick, Patterson, and Ramanan 2013; Yuen
et al. 2009). This is further supported by the notion that
data labeling service providers (e.g., Amazon Sagemaker
Ground Truth1) offer video object tracking as a key annota-
tion service for their customers. In general, the area remains
an active area of interest for researchers across computer
vision, machine learning, human computation, and human-
computer interaction.

Researchers have explored a large number of solutions for
improving the efficiency of video object tracking annotation
tasks. For example, video keyframe interpolation is a tech-
nique that asks human annotators to create labels for objects
of interest on a subset of frames in a given video sequence
and automatically localizes objects of interest on all remain-
ing frames using an interpolation algorithm or model (Wang
et al. 2004). The technique not only relies heavily on sev-
eral characteristics of the video data to perform correctly
(e.g., video frame rate, predictability of object trajectories,
etc.), but also introduces new challenges for researchers,
such as keyframe selection (Kuznetsova et al. 2021). Along-
side techniques for reducing the amount of data, prior re-
search has introduced methods that allow annotators to ap-
ply labels to regions of 2D space in an imprecise fashion
(Bai et al. 2009; Veksler, Boykov, and Mehrani 2010).

Productivity in Knowledge Work
Knowledge work can be defined as the efficient utilization of
intellectual resources to accomplish tasks, solve problems,
and generate valuable outcomes in a professional setting.
Historically, productivity is measured by comparing an indi-
vidual’s output to an expected target output. However, recent
studies suggest that the productivity of knowledge workers
is best defined by the individual rather than uniformly ap-
plying a measure of productivity to a group of people in ag-
gregate (Kim et al. 2019). Researchers generally agree that
there is no uniform definition or conceptualization of pro-
ductivity in knowledge work as each task context is unique.

Understanding Time Spent in Knowledge Work. Re-
searchers in human-computer interaction have taken strides
in understanding how time can be leveraged as a measure of
productivity. A large number of commercially available soft-
ware tools allow knowledge workers to understand how they
spend their time across their computer applications (e.g.,
RescueMe, ActivityWatch, Apple’s ScreenTime). Prior re-
search has demonstrated how the time measurements col-
lected by these applications translate to observed or per-
ceived productivity (Williams et al. 2018). Studies also illus-
trate how these systems can facilitate self-reflection and sup-
port people in spending their time in a more desirable fash-
ion (Whittaker et al. 2016). It should be noted that spending
time productively is an assessment that, as with measures
of productivity, can only be defined and assessed from the
perspective of the individual (Guillou et al. 2020).

Understanding and Supporting Worker Productivity.
Worker productivity has been, and continues to be, a center-
piece of human computation research. A breadth of studies

1https://aws.amazon.com/sagemaker/data-labeling/
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Constraint Type Constraint Description

Local Is this object a motorized vehicle in a valid object class?
Local Are all of this vehicle’s brake lights currently visible in this frame?
Local Is this vehicle in the same lane as the ego vehicle or at most one lane over?
Local Is this vehicle moving in the same direction as the ego vehicle?
Global Does this object have its brake lights on at least once at any point in this video?

Table 1: The labeling constraints considered in our experimental design, as well as type of constraint.

have examined how the productivity of workers on Ama-
zon Mechanical Turk is, for example, affected by software-
driven interruptions (Williams et al. 2019), task design in-
terventions for well-being (Rzeszotarski et al. 2013), and
tools to increase pay (Savage et al. 2020). A small number of
studies have examined crowd workers’ time use through the
lens of multitasking (Lascau et al. 2019) or platform design
(Lascau et al. 2022). Other studies of crowd work collect
information that describes how time is spent at the macro-
level (e.g., total task time) rather than the micro-level (Siu,
Guzdial, and Riedl 2017). Though the labor performed in
human computation and crowd work has yet to be formally
categorized as “knowledge work”, researchers have voiced a
number of challenges that workers experience in the emerg-
ing profession of “data annotation” (Miceli, Schuessler, and
Yang 2020; Wang, Prabhat, and Sambasivan 2022). How-
ever, unlike most knowledge work settings, data annotators
often lack the ability to self-define their own productivity as
a result of goals defined by their managing organization that
dictate their individual work.

Study Design
To better understand how time is spent during the prepara-
tion and completion of video object tracking (VOT) anno-
tation tasks, we conducted a controlled study with full-time
annotators in a large-scale data labeling organization. Here,
we describe the task in which our study was conducted, the
research questions that motivated our study, and the method-
ology used to address our questions in this context.

Task Design
Our study aims to better understand how annotators spend
their time throughout VOT annotation tasks. An important
caveat of time-use, particularly in software applications, is
that findings are heavily intertwined with the task’s com-
plexity (Kiani et al. 2019). Task complexity has been, and
continues to be, a thriving area of research in human com-
putation because it involves subjective task properties and a
variety of individual factors related to the individual’s expe-
rience, knowledge, and skillset (Campbell 1988). To better
understand how time-use varies across a broader set of con-
texts, we manipulate our study’s task design on the basis
of two key dimensions that serve as proxies for task com-
plexity and have been studied extensively (i.e., by alternative
names) in other contexts (Yang et al. 2016):

1. Label Granularity: A task design dimension that de-
scribes the specificity of an object label.

2. Label Constraint: A task design dimension that describes
the prerequisites for labeling an object.

In support of using these dimensions, we defined a binary
spectrum that allows us to map each task design dimension
with one of two values: ‘‘low” and “high“. Our conceptu-
alization of label granularity mirrors definitions from prior
work that described labels as being either coarse-grained
(e.g., Animal, Vehicle) or fine-grained (e.g., Dog, Plane)
(Chen et al. 2018). We refer to “coarse-grained labels“ as
having low label granularity while we refer to “fine-grained
labels“ as having high label granularity. Similarly, our con-
ceptualization of label constraint draws from prior work that
describes the various types of global and local constraints
that are prerequisites for labeling an object (Zhang et al.
2012). We refer to a near-zero number of constraints as hav-
ing “low” label constraint while having a larger number of
constraints would be classified as “high”.

Vehicle Tracking
We ground our study in a common object tracking setting:
Vehicle Tracking. Vehicle tracking is a type of VOT in which
human annotators are tasked with labeling vehicles in video
sequences (Zheng 2015). As the efficacy of automated tech-
niques for vehicle tracking can vary significantly based on
the quality of video data, vehicle tracking has been recog-
nized as a valued area of application and practice for human
annotation (Schubert, Richter, and Wanielik 2008). Speak-
ing to its longitudinal relevance, data annotation for vehi-
cle tracking has only become more prominent with the rise
of autonomous vehicles, whose market is projected to grow
substantially (Bridgelall and Stubbing 2021).

Experimental Conditions
We designed and conducted a between-subjects 2×2 facto-
rial design study. Each condition in the study is mapped to
a specific task design that is jointly dictated a specific Label
Granularity (i.e., “low” or “high”) value and a specific Label
Constraint value (i.e., “low” or “high”) as follows:

• Condition 1: Low Granularity X Low Constraint
• Condition 2: Low Granularity X High Constraint
• Condition 3: High Granularity X Low Constraint
• Condition 4: High Granularity X High Constraint

Tasks completed with a “low” value for label granularity
were asked to label and track vehicles with only one generic
label (i.e., “vehicle”) while tasks created with the “high”
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Figure 1: Task interface.

value were asked to label and track vehicles with five pos-
sible labels of higher specificity (i.e., “Car”, “Van”, “Bus”,
“Truck”, and “Motorbike”), which reflect the most common
vehicular labels in publicly available datasets (Agarwal and
Suryavanshi 2017). This means that annotators who only
differed on level of label granularity were expected to gener-
ate all of the same annotations, with the only difference be-
ing the level of label specificity assigned to each annotation.
Tasks completed with a “low” value for label constraint were
only asked to label all motorized vehicles (that belonged to
a valid object class, if the corresponding label granularity
was high), while tasks with the “high” value needed to con-
sider all of the constraints found in Table 1 before deciding
whether to create an annotation.

Research Questions
The following main research questions motivate our study:

• Q1: How do characteristics of the VOT task and of the
worker impact the time spent performing annotation?

• Q2a: How do characteristics of the VOT task and of the
worker impact how workers perceive time spent perform-
ing annotation?

• Q2b: How do characteristics of the VOT task and of the
worker impact how workers perceive time spent perform-
ing activities that assist with their annotation?

Due to the fact that our mechanism for capturing how time
is spent is limited to actions performed in the annotation task
environment, we can only explore perceived time spent per-
forming assistive activities rather than a more objective mea-
sure of time spent.

Task
We facilitate our study using one of the most common types
of VOT for vehicle tracking contexts: labeling vehicles in
2D video sequences with bounding box annotations.

Task Interface. Prior research suggests that an individ-
ual’s familiarity with software can dramatically affect how
they spend time using it (Kiani et al. 2019). In an effort to
limit any such tooling bias, we employ a commercial anno-
tation interface that is already being used by study partic-
ipants in their everyday work to complete VOT annotation
tasks. Importantly, the interface provides native support for
the collection of interface telemetry data, which we detail
further when describing our data collection paradigm.

As shown in Figure 1, the annotation interface provides
a core set of functionality that is generally shared across
modern VOT annotation interfaces. The interface’s inter-
active functionality is primarily facilitated by four modes
that dictate how user input (e.g., mouse and keyboard in-
teraction) translates to an interface action. The interface al-
lows only one mode to be active at a time and facilitates
mode-switching with a button toolbar at the bottom of the
screen. The interface’s default mode is the Annotation mode,
which maps mouse clicks on the video frame canvas to ini-
tiate the creation of bounding box annotations. As users
click and hold the mouse on the canvas, the interface will
draw a bounding box that resizes the box until the mouse
is released. The interface uses a similar click-and-drag tech-
nique when the Panning mode is active, allowing the user to
reposition the portion of the video frame that is visible. In
contrast, the Zoom-In and Zoom-Out modes facilitate zoom
functionality mapping their respective actions using only the
mouse-down event.

The annotation interface provides several functionalities
that can be invoked regardless of the active mode. For exam-
ple, the interface facilitates video playback with a set of stan-
dard controls (i.e., Play, Pause, Next Frame, and Previous
Frame) as well as a slider that facilitates rapid video scrub-
bing. The interface also allows the modification and dele-
tion of bounding box annotations, at any time, using conven-
tional direction manipulation techniques (e.g., clicking-and-
dragging edges) as well as keyboard shortcuts (e.g., press-
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ing “Delete” removes the selected annotation). To ease the
burden of tracking objects across frames, the interface pro-
vides two toolbar buttons – Copy-to-Next and Copy-to-All
– that facilitate copying annotations, in place, from the cur-
rent video frame to the next frame or from the current frame
to all subsequent video frames, respectively. The interface
also provides a Predict Next toolbar button that copies the
annotation and then attempts to adjust and extrapolate its
positioning for correctness on the subsequent frame.

Task Dataset. Prior studies of human annotators in object
tracking contexts use publicly available datasets to facilitate
their research (Agarwal and Suryavanshi 2017). Recent re-
ports suggest that these datasets may be flawed as their no-
tion of “ground truth” may be polluted with error (Northcutt,
Athalye, and Mueller 2021). Furthermore, as their re-use
across experiments continues, it remains unclear whether bi-
ases arise from repeatedly seeing the same task or data. We
therefore designed our study’s vehicle tracking task to use
2D video sequence data from an internal proprietary dataset
of 100 video sequences. We designed each task to show a
single video sequence that was recorded at 30 frames-per-
second and was composed of 1,000 individual video frames.
Each video sequence was filmed in an Asian country and
included a variety of locations that were primarily urban,
such as city streets and highways. All sequences were filmed
from the point-of-view of the “ego” vehicle, which is ac-
tively driving on the road at the time of data collection.

A total of 10 video sequences were selected for use in
our study through random sampling. All sampled sequences
are representative of the dataset’s environmental diversity,
including a range of different types of vehicles and a range
of different driving scenarios (e.g., two-way traffic vs. one-
way traffic, multi-lane vs. single lane, etc.).

Data Collection
We address our research questions using a variety of qualita-
tive and quantitative data that was collected before, during,
and after our study. We now describe the techniques that fa-
cilitated this data collection in detail.

Pre-Study Survey. We deployed an online survey at the
beginning of our study to collect information about our an-
notators. We first inquired about participants’ demograph-
ics and their prior experience with annotation as a career,
prior experience with bounding box annotation, and prior
experience with video object tracking tasks. After encourag-
ing participants to briefly open the task interface in a new
browser tab, we then inquired about participants’ estimates
of how much time they will spend on various activities dur-
ing the task in the form of Likert-based agreement questions
(e.g., “I will spend a significant amount of time creating an-
notations in the interface.”).

Interface Telemetry Data. We analyze interface teleme-
try data collected during the completion of the study task.
Each telemetry event includes an event type, an event name,
and a timestamp of when the action occurred. All event
names map directly to the user action that motivated the cre-
ation of the telemetry event (e.g., manually creating a bound-

Event Type Event Name Analysis Type

Label

Create - Manual (m.create) Count / Time
Create - Copy (c.create) Count
Create - Predict (p.create) Count
Edit (edit) Count / Time
Delete (delete) Count

Navigate Play Video (play.v)2 Time
Previous Frame (f.back) Count

Zoom Zoom In (zoom.i) Count
Zoom Pan (zoom.p) Count

Window Suspend Window (w.halt) Count
Resize Window (w.size) Count

Table 2: The types of telemetry we considered for our anal-
ysis, broken up into larger event types, and also including
whether the analysis of that event consisted of event counts
or durations of time spent performing that event.

ing box by hand). We simplify our analysis of this data by
examining it through the lens of aggregated count data rather
than individual event logs. The types of collected telemetry
events can be found in Table 2.

Post-Study Survey. After task submission, we adminis-
tered a post-study survey that inquired about participants’
perceptions of how time was spent on activities both before
the task (e.g., reviewing instructions) and during the task
(e.g., creating annotations, playing the video, etc.). The sur-
vey also inquired about the use of resources that were used to
assist them with the task (e.g. information from coworkers).

Procedure
Upon recruitment, each study participant was assigned to
one of four possible task design conditions alongside one
of ten possible videos sampled from the dataset. Our assign-
ment mechanism was performed such that no two partici-
pants shared the same combination of condition and video
assignments. Following assignment, study participants were
provided with a PDF file that described instructions for
completing the task and several participant-specific URLs
to each of the surveys. Participants were then instructed
to begin the pre-study survey and and start recording their
screen. After completing the pre-study survey, study partic-
ipants were asked to set a one-hour timer to mark their al-
lotted task time and were subsequently permitted to work on
the task. Once the one-hour timer was finished, participants
were asked to submit the task that they had been assigned re-
gardless of how much progress they had made. Afterwards,
participants were asked to complete the post-study survey
and upload the recording of their study activity to a shared
cloud-based storage directory.

2This metric was calculated based on the Load Frame telemetry
event. The Load Frame event appeared both in between traditional
frame navigation forward or backward and also when the video was
being played through. Time spent playing through the video was
calculated by recording the time between successive Load Frame
events with no other event types in between.
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Dep. Ind. β Std.Error z Adj. p Dep. Ind. β Std.Error z Adj. p
m.create exp. −0.360 0.246 −1.467 0.277 f.back exp. 0.272 0.243 1.119 0.380

gran. 0.319 0.232 1.373 0.310 gran. −0.298 0.232 −1.287 0.336
con. −1.338 0.233 −5.741 < 0.001*** con. 0.619 0.232 2.672 0.043*

c.create exp. 0.835 0.501 1.668 0.206 zoom.i exp. 0.188 0.236 0.796 0.536
gran. 0.838 0.478 1.754 0.182 gran. −0.710 0.225 −3.153 0.013*

con. 0.320 0.478 0.670 0.594 con. −0.476 0.225 −2.115 0.103
p.create exp. 0.214 0.660 0.324 0.797 zoom.p exp. −0.492 0.398 −1.236 0.338

gran. −0.677 0.630 −1.075 0.393 gran. 1.321 0.356 3.708 0.002**

con. 0.527 0.630 0.837 0.524 con. −0.427 0.346 −1.235 0.338
edit exp. 0.368 0.195 1.891 0.164 w.halt exp. 0.538 0.245 2.192 0.096†

gran. 0.133 0.186 0.716 0.578 gran. −0.013 0.237 −0.055 0.957
con. −0.284 0.186 −1.529 0.259 con. 0.056 0.237 0.238 0.834

delete exp. 2.136 0.435 4.910 < 0.001*** w.size exp. −0.668 0.377 −1.772 0.182
gran. −0.916 0.421 −2.178 0.096† gran. −0.757 0.337 −2.247 0.096†

con. 0.534 0.394 1.356 0.310 con. 0.901 0.344 2.619 0.043*

Table 3: Regression models for the impact of worker experience (exp.), task granularity (gran.), and task constraint (con.) as
predictors of counts of the telemetry events referenced in Table 2. Adjusted p-values have been corrected for false discovery
rate. *, **, and *** represent the statistical significance levels of 0.1, 0.05, 0.01, and 0.001, respectively.

Dep. Ind. β Std.Error z Adj. p
m.create exp. −0.116 0.371 −0.313 0.797

gran. 0.339 0.352 0.964 0.460
con. −1.558 0.352 −4.425 0.001**

edit exp. < 0.001 < 0.001 −2.944 0.0377*

gran. < 0.001 < 0.001 −0.488 0.721
con. < 0.001 < 0.001 1.895 0.173

play.v exp. −0.001 0.001 −1.139 0.380
gran. < −0.001 0.001 −0.346 0.797
con. −0.004 0.002 −2.444 0.085†

Table 4: Regression models for the impact of worker expe-
rience (exp.), task granularity (gran.), and task constraint
(con.) as predictors of the duration of time spent on the
telemetry events referenced in Table 2. Adjusted p-values
have been corrected for false discovery rate. *, **, and ***

represent the statistical significance levels of 0.1, 0.05, 0.01,
and 0.001, respectively.

Recruitment Methodology and Participants

Data annotation is becoming increasingly more prominent
as an emerging information work profession. We therefore
modeled our recruitment methodology on the basis of re-
cruiting participants that are already engaged in full-time
data annotation work. Recruitment was facilitated using an
internal mailing list of full-time employees that are engaged
in data annotation work.

Using this recruitment methodology, we recruited a to-
tal of 40 full-time annotators (20M/20F) based in India.
All study participants reported having prior experience with
the study’s annotation interface, ranging from less than 2
months to more than 2 years. Our participants’ age ranges
were near-equally split between 25-34 (53%) and 18-24
(47%). 23 participants (58%) reported having less than 2
months of experience with VOT tasks. Although condition

was assigned to participants randomly, we found that the
proportion of low experience to high experience was gen-
erally balanced across all four conditions, with each condi-
tion having either 3 high/7 low experience participants or 4
high/6 low experience participants. The equipment used by
participants was standardized, and all 40 participants indi-
cated that they used a single screen during this study.

Results
In this section, we present findings for each of our study’s
research questions. We start off by analyzing how task com-
plexity impacts time spent performing annotation as mea-
sured by our telemetry (RQ1). We then look to our pre-study
and post-study survey responses in order to examine how
task complexity impacts how workers perceive time spent
while both performing annotation (RQ2a) and performing
activities that assist with annotation (RQ2b).

The dimensions of task complexity that we consider our
independent variables for this analysis are label granular-
ity, label constraint, and worker experience. Much like la-
bel granularity and label constraint, we defined “high” and
“low” levels for the worker experience variable and assigned
a value to a participant based on their own self-reported ex-
perience with VOT tasks3. Although the majority of our par-
ticipants fell into the least experienced category as presented
in our question (i.e., “Less than 2 months”), we chose not to
make the split there, even though it would have more appro-
priately divided the participants into equal groups, because
we felt that 2 months of experience was too low. We instead
define the split between “low” and “high” worker experience
at 6 months, such that a participant with less than that is con-
sidered low experience and a participant with more than that

3Our participants’ answers to the three experience questions in
the pre-study survey were found to be highly correlated, so we
chose experience with VOT tasks to be our experience indicator
as it was the most specific.
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is considered high experience. With this split, we ended up
with 14 participants with “high experience” and 26 partici-
pants with “low experience.”

RQ1: Understanding Time Spent
To understand how time was spent by our participants, we
analyzed the telemetry events detailed in Table 2 either as
event counts or durations of time spent by our participants,
depending on the Analysis Type of the event. In order to
investigate the impacts of label constraint, label granular-
ity, and worker experience on the telemetry events recorded,
we ran generalized linear models (GLMs). During early in-
vestigations into creating generalized linear mixed models
(GLMMs) with video ID as the random effect, we found no
indication of it playing a significant role, so we opted for
more simplified GLM models instead. Model distributions
were selected based on best fit per AIC score and residuals.

For predicting counts, we used a negative binomial dis-
tribution, although specifically for the counts of Zoom In,
Zoom Pan, and Delete events, a zero-inflated negative bino-
mial distribution was used due to the number of participants
who did not perform these events. For predicting time dura-
tions spent on the Edit and Play Video events, we ran GLMs
with a gamma distribution, and for the time durations spent
on Create - Manual, a Tweedie distribution was used in-
stead. For all model outputs across both count and time anal-
ysis, p-values were corrected for false discovery rate (FDR)
using the Benjamini and Hochberg method (Benjamini and
Hochberg 1995). The output of the models analyzing event
counts and time durations can be found in Table 3 and Ta-
ble 4, respectively.

For our subsections on the impacts of label constraint, la-
bel granularity, and worker experience, we start by looking
at the results of the GLM models presented in the tables.
For the findings with levels of significance, we present the
mean (mean) and standard error of the mean (sem) values
of the counts and time durations to provide context. Finally,
we present the findings of differences in generated state dia-
grams based on transitions between telemetry event types as
exhibited by participants.

General Annotator Behavior. Across all 40 of our par-
ticipants, the actions performed most were Previous Frame
(mean count: 694.75), Zoom In (mean count: 464.65) and
Edit (mean count: 379.83, mean time: 726.66 seconds). Each
participant, on average, also manually created 18.83 annota-
tions, deleted 58.63 annotations, and spent 196.67 seconds
(3.28 minutes) playing through the video.

The Impact of Label Constraint. Starting off with the
impact of label constraint on how our participants spent their
time, we find that those assigned to a low constraint condi-
tion not only created significantly more Create - Manual an-
notations (mean: 32.45, sem: 10.30) than those assigned to
a high constraint condition (mean: 5.20, sem: 1.10), but they
also spent significantly more time in total creating manual
annotations (LC mean: 156.52 seconds, sem: 71.55 seconds;
HC mean: 15.16 seconds, sem: 2.68 seconds). However, we
see no significant difference in terms of number of or time

spent on Create - Copy annotations, Create - Predict annota-
tions, edits, or deletions.

In terms of navigation while annotating, we see evidence
that participants assigned to a high constraint condition
navigated backwards through frames (mean: 961.00, sem:
312.07) more frequently than those assigned to a low con-
straint condition (mean: 428.50, sem: 140.15). Our results
also suggest that participants with a high constraint condi-
tion may have spent more time playing through the video
(LC mean: 102.58 seconds, sem: 28.17 seconds; HC mean:
290.77 seconds, sem: 57.99 seconds). We did not find any
difference in terms of number of zoom events performed,
but initial analysis suggests that those with a high constraint
condition resizing the window of their annotation more fre-
quently (mean: 1.80, sem: 0.93) than those with a low con-
straint condition (mean: 0.45, sem: 0.11). Looking closer
into this finding, however, we see that it was largely driven
by a single worker assigned to the high constraint condition.

Lastly, we look to the state diagrams of workers in low
and high constraint conditions shown in Figure 2a and Fig-
ure 2b, respectively. The most notable difference in patterns
of behavior between the two groups is that participants as-
signed to a high constraint condition had a much higher
probability of transitioning from a Label event directly to
a Navigate event (transition probability: 0.63) as compared
to those assigned to a low constraint condition (transition
probability: 0.39). This was also the most likely transition
from a Label event for those with a high constraint task.
Instead, participants assigned to a low constraint task were
most likely to transition from a Label event to another Label
event (LC transition probability: 0.40; HC transition prob-
ability: 0.33), but they were also more likely to transition
from a Label event to a Zoom event (transition probability:
0.21) than those assigned to a high constraint task (transition
probability: 0.05).

Altogether, our findings suggest that annotators given a
VOT task with a high level of constraints spend more time
navigating through the task (including moving backwards
to see previous frames and playing through the video) and
more quickly jump back into navigation events after per-
forming labeling events. Annotators given a VOT task with
a low level of constraints, however, spend more time man-
ually creating annotations and may need to perform more
actions after labeling before they can move on to the next
frame. This aligns with our intuition that a low constraint
task will require more annotations to be made per frame, in-
cluding more manual annotations on the first frame before
assistive tools can be used for subsequent frames and more
labeling activities that may need to be done before one can
move to the next frame. In terms of navigation, the presence
of global constraints in high constraint tasks seems to also
require annotators to skip around through the video in or-
der to determine whether objects meet constraints, leading
to greater play time and backwards navigation.

The Impact of Label Granularity. Looking now into the
impact of label granularity, we find that those assigned to a
low granularity condition zoomed into the annotation can-
vas significantly more (mean: 659.30, sem: 144.21) than

146



(a) Low Constraint (b) High Constraint (c) Low Granularity (d) High Granularity

Figure 2: State diagrams showing participants’ likelihood of transitioning from one type of event to another in both low con-
straint and high constraint conditions. Telemetry events in each corresponding event type are seen in Table 2. The diagrams are
heat maps reflecting transition probabilities, and the coloring of event type nodes reflect the probabilities of self-loops.

those assigned to a high granularity condition (mean: 270.0,
sem: 62.44). On the other hand, our participants assigned
to a high granularity condition performed significantly more
zoom pan events (mean: 94.15, sem: 46.73) than those as-
signed to a low granularity condition (mean: 16.35, sem:
6.35). Looking closer into this finding on zoom pan events,
we see that the majority of workers from both granularity
conditions did not perform any zoom pan events, but the
7 high granularity participants who did performed signifi-
cantly more zoom pans (mean: 269.00) than the 8 low gran-
ularity participants who did (mean: 40.88).

For label events, we find some evidence that our partici-
pants assigned to a high granularity condition may perform
more deletions (mean: 90.35, sem: 54.19) than those with a
low granularity condition (mean: 26.90, sem: 11.91). Look-
ing closer into this finding, we see that only half of the low
granularity participants performed any deletions at all while
17 out of the 20 high granularity participants performed at
least one deletion event. As a brief look at window events,
we see some evidence that participants assigned a low granu-
larity condition may resize the window more frequently (LG
mean: 1.70, sem: 0.93; HG mean: 0.55, sem: 0.17). How-
ever, this finding appears to be driven a single participant
rather than a trend between the two groups.

Finally, we consider the state diagrams of workers in low
and high granularity conditions shown in Figure 2c and Fig-
ure 2d, respectively. Most notably, we see that participants
assigned to a low granularity condition were more likely
to perform successive zoom events (transition probability:
0.88) as compared to those assigned to a high granular-
ity condition (transition probability: 0.74). Although both
groups were most likely to transition to a zoom event from
a previous zoom event, the group with high granularity
showed a greater probability of transitioning from a zoom
event to a label event (transition probability: 0.23) than the
group with low granularity (transition probability: 0.10).

Altogether, we find that differences in label granularity
largely impact the zoom events that annotators perform. An-
notators with a low label granularity task appear to perform
more zoom in events and be more likely to perform suc-
cessive zoom events. On the other hand, annotators with a

high label granularity task appear to perform more zoom pan
events and be more likely to transition to the next label after
a zoom event. This may correspond to annotators with high
granularity needing to be zoomed into a greater number of
annotations in order to determine which label they fall into,
causing them to zoom pan between different annotations in
order to keep that level of magnification. Annotators with
low granularity, however, may only need to zoom in to spe-
cific objects that they have trouble determining boundaries
for, potentially increasing the number of zoom in and out
events rather than panning around the canvas. Lastly, anno-
tators with high granularity may also be more likely to per-
form label deletions, suggesting that many of these deletions
may be related to an incorrect label for the annotation cho-
sen rather than the bounding box of the annotation itself.

The Impact of Worker Experience. Comparing our par-
ticipants with different levels of VOT annotation experience,
we find that although there is no significant difference in
terms of number of edits performed, those with a higher level
of experience spent significantly more time editing their an-
notations (mean: 905.30 seconds, sem: 177.35 seconds) than
those with lower experience (mean: 548.03 seconds, sem:
51.89 seconds). We also see that participants with higher
levels of experience performed significantly more delete
events (mean: 131.43, sem: 76.42) than those with lower ex-
perience (mean: 19.42, sem: 7.13). Looking closer into this
finding, we see that lower experience participants were more
likely to perform at least one deletion (77%) compared to
higher experience participants (50%), but higher experience
participants who performed deletion events did significantly
more (mean: 262.86) than participants with lower experi-
ence (mean: 25.25).

Looking into window events, we also see that partici-
pants with higher levels of experience may have suspended
the annotation window more often (mean: 12.93, sem: 1.76)
than those with lower levels of experience (mean: 6.12, sem:
1.55). We also see that 100% of participants with high expe-
rience suspended the annotation window at least once, while
the same was true for 77% of low experience participants.
State diagrams comparing transition probabilities between
event categories for low and high experience participants
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were also generated, but there were no notable differences
found between the groups.

Altogether, we see evidence that high experience annota-
tors may be more meticulous when it comes to their work
than low experience annotators. We see this in the finding
that our participants with high experience spent more time
editing their annotations, and we partially see this in the in-
teresting split down the middle of our high experience anno-
tators where one half of them performed an incredibly high
number of annotation deletions. For the other half of our
high experience participants who performed no deletions,
this may potentially be an indication of higher confidence
with the task. Due to the limitations of our telemetry, we do
not know how our high experience participants who were
more frequently suspending the annotation spent this time,
but a hypothesis is that they were more frequently checking
task instructions than our participants with low experience.

RQ2: Understanding Perceived Time Spent
To understand how time was perceived to be spent by our
participants, we analyze the following pre-study and post-
study survey questions. In the pre-study, participants were
asked to estimate how much time they would spend on vari-
ous annotation activities and assistive activities before and
during the VOT task with the following prompt: “I will
spend a significant amount of time in the interface.”
These statements were presented in the form of an agree-
ment Likert question on a scale from 1 to 5, where the blank
was filled in with an annotation activity (e.g., editing anno-
tations, playing the video, etc.).

In the post-study, participants were asked a Likert-style
question analogous to the one in the pre-study, except the
wording of the statements was changed from “I will spend”
to “I spent.” In addition, participants were asked additional
Likert-style questions on a scale from 1 to 5 related to how
frequently they engaged in assistive activities during the task
(e.g., looking back at annotation instructions, discussing the
task with others, etc.), questions related to the types of assis-
tive activities they performed and resources they referenced
before and after the task, and how long they estimated to
have spent performing assistive activities before starting the
task. We also asked participants to rank annotation and as-
sistive activities based on their perception of time spent.

We start this section first by discussing general behav-
ior seen across all participants in terms of how they ranked
their time spent, as well as the assistive activities and re-
sources they engaged with. For analyzing the impact of
task complexity on perceived time spent on annotation
(RQ2a) and assistive activities (RQ2b), we compared the
Likert responses between groups for both the pre-study
and post-study questions by performing Mann-Whitney U-
tests (Mann and Whitney 1947), a non-parametric test for
examining differences between two unpaired groups. Mann-
Whitney U-tests were also used to compare estimated time
spent performing assistive activities across groups.

General Behavior. When asked to rank their annotation
related activities, with 1 being the most time-consuming and
10 being the least, our 40 participants indicated the follow-

ing ordering in their post-study survey: 1) zooming/panning
(mean rank: 3.40), 1) playing the video (mean rank: 3.40),
3) performing activities that improved their understanding
of the task before working on it (mean rank: 3.78), 4) cre-
ating annotations (mean rank: 3.90), 5) editing annotations
(mean rank: 4.50), 6) performing activities that improved
their understanding of the task while working on it (mean
rank: 5.23), 7) reviewing annotations (mean rank: 5.25),
and 8) deleting annotations (mean rank: 6.55). It’s impor-
tant to note that we don’t have any sort of objective time or
count estimates for a few of these activities (i.e., perform-
ing activities to improve understanding and reviewing an-
notations), meaning that collecting perceptions is currently
the only way to measure them. It is also interesting to note
that even though we found that our average participant spent
more than 3 times the amount of time editing annotations
as they did playing through the video, editing was on aver-
age ranked 5th in terms of perceived time consumption as
opposed to playing through the video, which tied for 1st.

When asked whether they had spent time performing any
activities before starting with the annotation task, 36 of our
participants (90%) indicated that they had. The most com-
mon activity performed was reading through the guidelines
they had been provided (indicated by 27 of the 36 who per-
formed these activities), but 2 participants also spent time
playing through the VOT task video, and another 3 chatted
with a colleague or manager before starting on the task. The
most common amount of time spent by our participants on
these activities was between 5 and 10 minutes (indicated by
12 out of the 36). When asked about resources referenced
while working on the task, 26 of the 40 participants (65%)
mentioned referencing the annotation guidelines, 4 partici-
pants referenced physical notes or printouts, and 3 partici-
pants mentioned having conversations with others about the
annotation task while working on it. 13 of the 40 participants
(32%) used no resources during annotation.

The Impact of Task Complexity on Annotation and As-
sistive Activities. We compare the responses of how our
participants perceived to spend their time across the levels
of label constraint, label granularity, and worker experience
separately. We also analyzed the responses from each of the
questions mentioned individually. Altogether, we found no
significant differences between the levels for any of the di-
mensions of task complexity. In sum, we found no impact of
task complexity on either how our participants expected to
spend their time on annotation activities prior to engaging in
the task or how they perceived to have spent their time on
annotation and assistive activities after engaging in the task.

Conclusions and Discussions
Our research takes strides in understanding not only how an-
notators spend their time in the completion of VOT tasks,
but also how they estimate and perceive their spent time.
First, we find that annotators’ interface activities, specifi-
cally video sequence navigation and zooming, are influenced
both by label granularity and by label constraint. Second, we
find that experienced annotators spend a larger amount of
time editing and deleting their annotations, indicating anno-
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tators may become more meticulous in their labeling as they
accumulate more experience. Experience aside, we find that
annotators, on average, underestimate the amount of time
they will spend editing annotations threefold. Finally, we
observe that 68% of annotators spent a portion of their task
time referencing the task’s annotation guidelines not only
before the task began, but also continuously throughout the
task. We now discuss the implications of our findings and
conclude with limitations of our study.

Rethinking How We Capture Time Spent
Our study demonstrates how annotators can spend time per-
forming task-related activities beyond the boundaries of an
annotation interface. Our work therefore reveals clear limi-
tations of data collection systems, such as telemetry instru-
mentation, that assume activities will be observable. In real-
ity, there exist a number of activities that are inherently in-
visible, such as computer activities beyond the browser tab
and non-digital activities beyond the computer. Without ap-
propriate context, differentiating between idle time and “in-
visible” activities is intractable.

Although our survey questions on perceptions of time pro-
vided some valuable information, such as the types of re-
sources that participants engage with during annotation, we
found no indication that perceptions of time can be used as
a proxy for actual time spent. In fact, we found evidence of
large discrepancies between actual time and perceived time
spent, most notably in time spent editing being underesti-
mated across participants by a factor of 3. A number of rea-
sons for this exist. For one, our method of capturing per-
ceptions may have been flawed (see Limitations and Fu-
ture Work), but properly capturing estimations of time may
be challenging in general. Estimating exact amounts of time
can be difficult when the actions are so interleaved, and less
rigid language prompting time estimation can be open to
interpretation. For instance, a “significant amount of time”
spent on an activity could be considered either in relation to
the total time spent or the time that one normally expects the
action to take.

With these limitations in mind, we consider more accurate
means of capturing time spent. Recording both the screen
with the annotation interface and the annotator’s environ-
ment would yield significant improvements, but this solution
brings up clear ethical questions of when productivity track-
ing becomes surveillance and the impact of such supervision
on annotator well-being. Limiting to screen recording helps
reduce this concern, but analyzing such recordings is subjec-
tive and tedious, not allowing for feedback on the fly. This
analysis, however, could help with identifying likely con-
text behind unknown patterns of behavior captured through
telemetry. Lastly, embedding materials that annotators fre-
quently use for assistance within the interface can capture
time spent that would normally be unknown.

Productivity in Professional Data Annotation
Our research sheds light on the importance of defining what
it means to be productive in data annotation work, showing
that how time is spent is only part of the story. We would
expect annotators with more experience in VOT tasks to

have learned more productive patterns of behavior over time
that result in more efficient labeling, but our findings poten-
tially suggest otherwise. However, understanding productiv-
ity goes beyond how quickly one can go from annotation
creation to navigating to the next frame, requiring an under-
standing of the quality of annotations. We consider the pos-
sibility that the extra time editing and additional deletions
done by our high experience annotators may be more pro-
ductive if it leads to an increase in quality above some un-
known threshold that results in stakeholder satisfaction. One
example of where this may come into play is when account-
ing for “jitter”. Therefore, looking into the impact of task
and worker characteristics on annotation quality is a neces-
sary step towards understanding productivity.

Though the estimates measured in our study do not di-
rectly correspond to productivity, our findings suggest that
productive patterns of behavior likely vary depending on
complexity of the task. These findings also suggest ideas for
optimizing productivity even if we cannot yet define it, such
as helping annotators with a high constraint task more easily
be able to identify which objects should be annotated to min-
imize time spent navigating through the task. There is also
reason to believe that worker perceptions of time spent can
act as an indication of worker well-being and productivity,
even if it does not correspond to objective time usage.

Limitations and Future Work

Our study has several limitations. First, our study was con-
ducted in the context of vehicle tracking under several task
designs that vary in their complexity. Our study cannot ex-
plain how time may be spent in types of annotation tasks,
video object tracking annotation tasks that do not involve
vehicle tracking, or in vehicle tracking settings that char-
acterize complexity through different means. Second, our
study was conducted with 40 full-time annotators based in
India that work at a large technology corporation. Our study
cannot draw conclusions about annotators who are located
elsewhere or are employed in other capacities.

Overall, we cannot say how our findings would change
if we included additional levels of constraint or granularity
within our study design or considered experience as con-
tinuous rather than a binary variable. Lastly, the scope of
responses available to our participants when reporting their
perceptions of time spent may have been too narrow to deter-
mine potential differences between groups. Presenting these
questions either in a more open-ended fashion or with a
larger scale (e.g., 1 - 100) may have changed our findings.

Future work involves efforts to explore how productivity
in data annotation may be defined from the combined lens of
label quality and a refined conceptualization of time spent.
To further assess the limitations of conventional telemetry
data collection, we will conduct a comparative analysis of
events through the lens of screen recordings and teleme-
try data collected during our study. As our understanding
of productivity and means of time tracking improve, we will
explore how productive behaviors can be modeled and lever-
aged to aid workers in spending their time well.
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